• 제목/요약/키워드: Heavy Haul

검색결과 7건 처리시간 0.013초

Dynamic response characteristics of crossing tunnels under heavy-haul train loads

  • Dong, Jie;Zhong, Shuai;Wang, Hai-long;Wu, Zhi-hui
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.103-112
    • /
    • 2020
  • The dynamic response of crossing tunnels under heavy-haul train loads is still not fully understood. In this study, based on the case of a high-speed tunnel underneath an existing heavy-haul railway tunnel, a model experiment was performed to research the dynamic response characteristics of crossing tunnels. It is found that the under-crossing changes the dynamic response of the existing tunnel and surrounding rock. The acceleration response of the existing tunnel enhances, and the dynamic stress of rock mass between crossing tunnels decreases after the excavation. Both tunneling and the excitation of heavy-haul train loads stretch the tunnel base, and the maximum tensile strain is 18.35 µε in this model test. Then, the measured results were validated by numerical simulation. Also, a parametric study was performed to discuss the influence of the relative position between crossing tunnels and the advanced support on the dynamic behavior of the existing tunnel, where an amplifying coefficient of tunnel vibration was introduced to describe the change in acceleration due to tunneling. These results reveal the dynamic amplifying phenomenon of the existing tunnel during the new tunnel construction, which can be referred in the dynamic design of crossing tunnels.

Risk identification, assessment and monitoring design of high cutting loess slope in heavy haul railway

  • Zhang, Qian;Gao, Yang;Zhang, Hai-xia;Xu, Fei;Li, Feng
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.67-78
    • /
    • 2018
  • The stability of cutting slope influences the safety of railway operation, and how to identify the stability of the slope quickly and determine the rational monitoring plan is a pressing problem at present. In this study, the attribute recognition model of risk assessment for high cutting slope stability in the heavy haul railway is established based on attribute mathematics theory, followed by the consequent monitoring scheme design. Firstly, based on comprehensive analysis on the risk factors of heavy haul railway loess slope, collapsibility, tectonic feature, slope shape, rainfall, vegetation conditions, train speed are selected as the indexes of the risk assessment, and the grading criteria of each index is established. Meanwhile, the weights of the assessment indexes are determined by AHP judgment matrix. Secondly, The attribute measurement functions are given to compute attribute measurement of single index and synthetic attribute, and the attribute recognition model was used to assess the risk of a typical heavy haul railway loess slope, Finally, according to the risk assessment results, the monitoring content and method of this loess slope were determined to avoid geological disasters and ensure the security of the railway infrastructure. This attribute identification- risk assessment- monitoring design mode could provide an effective way for the risk assessment and control of heavy haul railway in the loess plateau.

Numerical Analysis on Pressure Characteristics of the Pipe system of Train

  • 남성원;장파
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.503-509
    • /
    • 2004
  • With modem computational fluid dynamics method (CFD), air-charging models of the air brake pipe system and auxiliary reservoir are built. Compared with one-dimension model, no empirical formula is introduced to solve branch pipe fields for two-dimension model. A modified operator-splitting method is presented to solve the coupled equations of pressure and velocity, and numerical simulation shows that it is very stable. Compare the numerical results with empirical data of heavy haul trains in home and abroad so as to prove the correctness of the theory and algorithm presented. This paper gives theoretic reference to the experiments of braking effects of heavy haul trains, and forms a basis for development of complete freight train air brake system simulation.

  • PDF

P4a 분배밸브를 사용하는 화물열차의 경험적 제동모델들의 비교 (Comparisons of Empirical Braking Models for Freight Trains Using P4a Distribution Valve)

  • 최돈범;김민수;이강미;김영국
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.61-69
    • /
    • 2020
  • 본 논문은 국내 고속형 화물열차에 적용되는 P4a 분배밸브를 갖는 화물열차의 장대 편성시 제동특성에 관한 것이다. 제동신호가 열차의 끝단까지 연결된 제동관을 통해 공기압력으로 전달되는 화차의 제동은 열차 길이와 사용된 밸브 등에 따라 영향을 받기 때문에 실험적 방법으로 확인한다. 장대화물 열차의 제동 특성은 평상시 운영의 약 2배인 50량으로 구성한 화물열차의 비상제동과 상용제동의 시험을 이용하였다. 1, 10, 20, 30, 50번째 차량에서 제동 실린더 압력이 측정되었다. 열차의 길이가 길어질수록 후방의 차량은 제동이 늦게 체결되는 제동지연 현상을 확인하였으며 특히 비상제동시 차량간 충격이 클 것을 예상할 수 있었다. 제한된 시험의 결과를 보완하고 향후 제동거리 계산을 위해 열차를 구성하는 모든 차량에서의 제동 압력을 예측할 필요가 있다. 제동시 각 차량에서의 압력은 계산시간의 단축과 신뢰성 있는 정보를 제공하는 것으로 알려진 선형보간, 단계형, 지수함수형의 경험적 모델들을 이용하여 예측하였다. 경험적 모델들의 예측결과는 실측한 결과들과 비교하였으며 지수함수형 모델이 비교적 정확하게 예측하고 있음을 확인하였다. 본 연구의 결과는 장대화물열차의 안전한 운용에 기여하고 화물열차의 제동거리 예측과 제동시 차량간 충격량 계산 등에 활용될 수 있을 것으로 예상된다.

Impact Variables of Dump Truck Cycle Time for Heavy Excavation Construction Projects

  • Song, Siyuan;Marks, Eric;Pradhananga, Nipesh
    • Journal of Construction Engineering and Project Management
    • /
    • 제7권2호
    • /
    • pp.11-18
    • /
    • 2017
  • The cycle time of construction equipment for earthwork operations has a significant impact on project productivity. Elements that directly impact a haul vehicle's cycle time must be identified in order to accurately quantify the haul cycle time and implement strategies to decrease it. The objective of this research is to scientifically identify and quantify variables that have a significant impact on the cycle time of a dump truck used for earthwork. Real-time location data collected by GPS devices deployed in an active earthwork moving construction site was analyzed using statistical regression. External data including environmental components and haul road conditions were also collected periodically throughout the study duration. Several statistical analyses including a variance analysis and regression analysis were completed on the dump truck location data. Collected data was categorized by stage of the dump truck cycle. Results indicate that a dump truck's enter idle time, exit idle time, moving speed and driver visibility can significantly impact the dump truck cycle time. The contribution of this research is the identification and analysis of statistically significant correlations of variables within the cycle time.

Modal parameters identification of heavy-haul railway RC bridges - experience acquired

  • Sampaio, Regina;Chan, Tommy H.T.
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.1-18
    • /
    • 2015
  • Traditionally, it is not easy to carry out tests to identify modal parameters from existing railway bridges because of the testing conditions and complicated nature of civil structures. A six year (2007-2012) research program was conducted to monitor a group of 25 railway bridges. One of the tasks was to devise guidelines for identifying their modal parameters. This paper presents the experience acquired from such identification. The modal analysis of four representative bridges of this group is reported, which include B5, B15, B20 and B58A, crossing the Caraj$\acute{a}$s railway in northern Brazil using three different excitations sources: drop weight, free vibration after train passage, and ambient conditions. To extract the dynamic parameters from the recorded data, Stochastic Subspace Identification and Frequency Domain Decomposition methods were used. Finite-element models were constructed to facilitate the dynamic measurements. The results show good agreement between the measured and computed natural frequencies and mode shapes. The findings provide some guidelines on methods of excitation, record length of time, methods of modal analysis including the use of projected channel and harmonic detection, helping researchers and maintenance teams obtain good dynamic characteristics from measurement data.

The characteristics of subgrade mud pumping under various water level conditions

  • Ding, Yu;Jia, Yu;Wang, Xuan;Zhang, Jiasheng;Luo, Hao;Zhang, Yu;Chen, Xiaobin
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.201-210
    • /
    • 2022
  • This paper presents a study regarding the influence of various water levels on the characteristics of subgrade mud pumping through a self-developed test instrument. The characteristics of mud pumping are primarily reflected by axial strain, excess pore water pressure, and fine particle migration. The results show that the axial strain increases nonlinearly with an increase in cycles number; however, the increasing rate gradually decreases, thus, an empirical model for calculating the axial strain of the samples is presented. The excess pore water pressure increases rapidly first and then decreases slowly with an increase in cycles number. Furthermore, the dynamic stress within the soil first rapidly decreases and then eventually slows. The results indicate that the axial strain, excess pore water pressure, and the height and weight of the migrated fine particles decrease significantly with a low water level. In this study, when the water level is 50 mm lower than the subgrade soil surface, the issue of subgrade mud pumping no longer exist.