• Title/Summary/Keyword: Heavy Duty

Search Result 444, Processing Time 0.029 seconds

The Korea Academia-industrial cooperation Society (상용 트럭의 공압 브레이크 응답 특성에 관한 연구)

  • Kim, Jin-Taek;Jung, Do-Gyun;Choi, Pan-Jin;Park, Won-Ki;Park, Chan-Hee;Ryuh, Beom-Sahng;Baek, Byung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1969-1975
    • /
    • 2012
  • The air brake system used in heavy vehicle is very important from the point of safety due to its weight. In general, air brake system generates relatively long response time and large loss of pressure. It is known that the response time can be decreased by optimal design of brake system, i.e., by increasing the system pressure, minimizing the air line, and material of components. In this study, We developed experimental rigs for the measurement of braking response of heavy duty trucks and compared with the simulated results obtained from the net work fluid flow system analysis code (FLOWMASTER). The effect of several parameters such as, system pressure, diameter of pipe, chamber temperature on the brake response performance have been examined.

Evaluation of Running Friction Torque of Tapered Roller Bearings Considering Geometric Uncertainty of Roller (롤러의 형상 불확실성을 고려한 테이퍼 롤러 베어링의 구동마찰토크 평가)

  • Jungsoo Park;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.183-189
    • /
    • 2023
  • A bearing is a mechanical component that transmits rotation and supports loads. According to the type of rotating mechanism, bearings are categorized into ball bearings and tapered roller bearings. Tapered roller bearings have higher load-bearing capabilities than ball bearings. They are used in applications where high loads need to be supported, such as wheel bearings for commercial vehicles and trucks, aircraft and high-speed trains, and heavy-duty spindles for heavy machinery. In recent times, the demand for reducing the driving friction torque in automobiles has been increasing owing to the CO2 emission regulations and fuel efficiency requirements. Accordingly, the research on the driving friction torque of bearings has become more essential. Researchers have conducted various studies on the lubrication, friction, and contact in tapered roller bearings. Although researchers have conducted numerous studies on the friction in the lips and on roller misalignment and skew, studies considering the influence of roller shape, specifically roller shape errors including lips, are few. This study investigates the driving friction torque of tapered roller bearings considering roller geometric uncertainties. Initially, the study calculates the driving friction torque of tapered roller bearings when subjected to axial loads and compares it with experimental results. Additionally, it performs Monte Carlo simulations to evaluate the influence of roller geometric uncertainties (i.e., the effects of roller geometric deviations) on the driving friction torque of the bearings. It then analyzes the results of these simulations.

Turbulent Mixing Flow Characteristics of Solid-Cone Type Diesel Spray

  • Lee, Jeekuen;Shinjae Kang;Park, Byoungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1135-1143
    • /
    • 2002
  • The intermittent spray characteristics of the single-hole diesel nozzle (d$\sub$n/=0.32 mm) used in the fuel injection system of heavy-duty diesel engines were experimentally investigated. The mean velocity and turbulent characteristics of the diesel spray injected intermittently into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer) . The gradient of spray half-width linearly increased with time from the start of injection, and it approximated to 0.04 at the end of the injection. The axial mean velocity of the fuel spray measured along the radial direction was similar to that of the free air jet within R/b= 1.0-1.5 regardless of elapsing time, and its non-dimensional distribution corresponds to the theoretical velocity distributions suggested by Hinze in the downstream of the spray flow fields. The turbulent intensity of the axial velocity components measured along the radial direction represented the 20-30% of the U$\sub$cι/ and tended to decrease in the outer region. The turbulent intensity in the trailing edge was higher than that in the leading edge.

Engine Management System remodeling from diesel to CNG system on used diesel truck(3.3L) (노후 경유자동차의 천연가스 자동차로의 개조기술 개발)

  • Lee, J.S.;Kim, B.G.;Chea, J.M.;Han, J.O.;Na, P.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3335-3340
    • /
    • 2007
  • The government have been tightening EM regulation gradually but the effect is not good because of rapid increase of vehicles. And medium & heavy duty diesel vehicles, even though the number is small, exhaust very large pollutants(about over 50%). Especially it is more severe about old trucks and buses. Accordingly, CNG vehicle and the retrofit of diesel to CNG must be an alternative in order to protect the atmospheric environment and improve the air quality in the metropolitan area. The main object of this study is to secure the retrofit technology of diesel to CNG vehicle and the management system of CNG engine. we passed the government emission certification test. In addition to this, the mass production for retrofit is also studied. Results of emission and durability test for certification are as follows; there was no problem during 30,000km vehicle durability test and good emission levels satisfying the regulation.

  • PDF

A Study on the Drive of Experimental Heavy Duty Handling Robot (실험용 초중량물 핸들링 로봇의 구동에 관한 연구)

  • Ko, Chang-Min;Park, Seung-Kyu;Chung, Won-Ji;Kim, Doo-Hyeong;Chung, Gwang-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.251-252
    • /
    • 2008
  • 본 연구는 6축 초중량물 핸들링로봇의 제어 성능을 구현하기 위해 전체적이 로봇의 제어에 가장 중요한 요소인 2축과 3축만을 가진 2축으로 된 실험용 로봇을 설계 제작하고 모션 제어기를 직접 설계하여 드라이브를 토크모드로 설정하고 구동실험을 수행하였다. 제어기로는 DSP를 사용하였으며 이는 초중량물을 핸들링하기 위해서는 샘플링주기를 작게 하기 위함이다. 해 연산 실행 속도가 빠른 DSP를 이용하였다. DSP와 AC 서보모터 드라이브 간의 인터페이스를 설계 제작 하였으며, PI제어기 알고리즘을 설계하여 직선보간 알고리즘에 적용함으로써 최종목적인 가반하중이 600Kg급 부하에도 강한 초중량물 핸들링 지능형 6축 로봇의 실현을 위해 원하는 경로를 부하의 영향에 받지 않는 고속 고응답성을 구현할 수 있는 2축 로봇제어에 대만 실험을 수행하였다. 속도, 위치제어에 대한 알고리즘으로는 PID 제어기를 사용하였다. 본 연구의 의의는 초중량물 핸들링 로봇의 제어에 있어서 로봇의 설계 및 제작이 최적화되어 있다면 작은 부하용 로봇의 제어와 크게 다를 바 없음을 보여주는데 있다.

  • PDF

Development of the Steering Gear Box for Electric Vehicles based on the Reverse Engineering (역설계 기반의 전기자동차 스티어링 기어박스 개발)

  • Moon, Sung-Sik;Yoo, Young-Min;Yoo, Woo-Sik
    • IE interfaces
    • /
    • v.25 no.1
    • /
    • pp.134-141
    • /
    • 2012
  • The steering gear box for mid-heavy duty electric vehicles are usually produced by only a few specialized companies. The special techniques, such as designing, producing and testing technology have been veiled. For this reason, steering gear boxes are imported from other country. The durability test with the electric vehicle which is satisfies the design parameters takes several years, and a prototype is installed in the real vehicle for the test. In this research, the steering gear box of the steering system was developed based on the reverse engineering and the testing methods and the steering gear box development process have been suggested. The prototype is also developed with the CAD and CAE tools. Developed steering gear box have been tested in torque tester and have satisfied requied torque. As a result, the process and testing methods studied in this research are useful in the development processes of electric vehicles steering system.

Analysis of the Effect of the Parameter on the Air Braking Response Time of Heavy duty Truck (상용 트럭의 공압 브레이크 제동 특성에 미치는 인자에 대한 연구)

  • Kim, Jin-Taek;Cho, Byoung-Soo;Baek, Byoung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • The effect of several parameters to minimize the braking response time has been investigated in this study. The experimental rigs were developed and the results of the experement compared with those of simulation obtained from the net work fluid flow system analysis code (FLOWMASTER). The braking response time and pressure loss were observed at separated braking port and found out that the response time can be reduced by considering the pipe length and environmental thermal conditions. The correlation equation was also presented to predict the pressure loss at various tank pressure.

Development of the wheel motor drive system integrated into low-floor axle for the electric bus (전기버스용 초저상 액슬 일체형 휠모터 구동시스템 개발)

  • Cho, Sang-Joon;Yoon, Young-Deuk
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.241-242
    • /
    • 2011
  • 교통 약자 승객의 편의성 증대, 도심의 매연 감소 및 온실가스 저감 등 대중 교통 선진화를 위해 친환경 초저상 전기버스의 개발이 필요하다. 초저상 전기버스는 초저상 액슬 일체형 휠모터 구동시스템을 탑재한 형태로 구현이 가능하며, 초저상 액슬 일체형 휠모터 구동시스템은 구동 모터를 액슬 허브에 일체화 시킴으로써 기존 구동시스템 대비 무게 및 사이즈가 대폭 줄어들고, 동력 전달 매커니즘을 획기적으로 개선하여 효율 향상 및 차량 연비 개선이 가능하다. 특히 바퀴 중심과 액슬 출력 중심에 단차를 둠으로써 차량의 전방 바닥 뿐만 아니라 후방바닥을 평평하게 유지할 수 있어 실내 공간이 획기적으로 개선되어 교통 약자를 포함한 승객의 편의성을 향상시킬 수 있다. 또한, 액슬 일체형 휠모터 구동시스템은 각 휠의 분산 구동이 가능하므로 동특성 및 구동제어성이 뛰어나고, ESP(Electronic Stability Program), VDC(Vehicle Dynamic Control) 등과 연계하여 통합적인 지능형 시스템을 구현할 수 있다. 액슬 일체형 휠모터 구동시스템은 휠모터와 감속기 및 휠모터제어기 등으로 구성되며, 본 논문에서는 초저상 액슬 일체형 구동시스템용 120kW급 휠모터 및 휠모터제어기의 개발 및 다이나모 환경에서 T-N 특성 및 최대 출력 시험, 효율 시험을 통해 전기버스 등 대형 차량(Heavy Duty Vehicle)에 적용 가능한 전기동력시스템의 성능을 확인하였다.

  • PDF

Program Development for Design and Part Load Performance Analysis of Single-Shaft Gas Turbines (단축가스터빈의 설계점 및 부분부하 성능해석 프로그램 개발)

  • Kim, Dong-Seop;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2409-2420
    • /
    • 1996
  • This paper describes the development of a general program for the design and part load performance analysis of single-shaft-heavy-duty gas turbines. Efforts are made to fully represent the real component features by the characteristic models and special emphasis is put on the modeling of cooled turbine stages. The design analysis routine is applied to simulate the performance of current gas turbines and its appropriateness for system analysis is validated. Meanwhile, the component parameters of real engines which describe the technology level are obtained. The program is extended to predicting the part load operation of gas turbines with the aid of models for the off-design characteristics of compressor, turbine and other main components. Part load simulation can be carried out only with limited numbers of input data. It is demonstrated that the program accurately estimates the part load characteristics of real turbines.

Investigation of Combustion Strategy for Commercialization of Low Temperature Diesel Combustion Engine (저온연소엔진 실용화를 위한 연소전략에 대한 연구)

  • Shim, Euijoon;Han, Youngdeok;Shin, Seunghyup;Kim, Duksang;Kwon, Sangil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.120-127
    • /
    • 2014
  • Robustness and controllability are the key factors in internal combustion engine commercialization. This study focuses on the combustion strategy to commercialize the low temperature diesel combustion technology. Various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. To find the best feasible LTC strategy, emission level, fuel consumption and combustion safety during the combustion mode change were considered. Experiments were carried out under various engine operating conditions; engine speed & load, EGR level, injection timing. Finally, this study suggests realizable LTC combustion strategy; moderate EGR level and slight early injection are possible to considerably lower PM, NOx emission and expand LTC operating range up to 50% load without CO and HC emission.