• Title/Summary/Keyword: Heavy Duty

Search Result 444, Processing Time 0.027 seconds

Vehicle Fuel Economy Improvement by Studies on the Engine Cooling and Ancilliaries System of the Heavy Duty Engine (차량 연비 향상을 위한 대형 디젤엔진 차량의 엔진 냉각 및 부대장치 연구)

  • Lyu, Myung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.79-84
    • /
    • 2007
  • Recently it is strongly required to develop the better fuel economy as well as basic power performance based on strict emission legislation. This paper focuses on studies of the engine cooling and ancillaries system among fuel economy factors in the developing stage. Firstly through the analysis of the current specifications, it is assessed whether each components may be designed properly, not overdesigned. Secondly, it is predicted how the fuel economy of each components can be improved. Finally the results are confirmed by vehicle field test equppted with the updatedcomponents. This study found good agreementbetween the prediction and the field test on the vehicle fuel economy improvements of the heavy duty engine vehicle with updated components such as engine cooling and ancilliaries.

A Study on the Performance for Heavy-duty Diesel Engine with Intake Air Filter (대형디젤기관에서 자동차 흡기 에어필터 장착에 따른 성능에 관한 연구)

  • Rha, Wan-Yong;Oh, Sang-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.114-117
    • /
    • 2005
  • Air cleaners in all of the automotive engines have been used for decades. In the early 1920's the oil bath type was the popular shape of air cleaners. The air cleaners of the oil wetted bath type were introduced in 1940's. The shape of the dry pleated paper type media was introduced in the 1950's. This trend still continues with new and innovative media being introduced. Engine air cleaners should have effectively removed and reduced harmful contaminants being ingested into engines. This studies show that both, the ingested contaminant size and concentration need to be controlled. This paper com pare and analyze the characteristics over the economics, engine performances and reduction of noises of power-plus air filters with wet paper which were sticked to heavy duty diesel engine.

Optimization of Heavy-Duty Diesel Engine Operating Parameters Using Micro-Genetic Algorithms (유전알고리즘을 이용한 대형 디젤 엔진 운전 조건 최적화)

  • Kim, Man-Shik;Liechty, Mike P.;Reitz, Rolf D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • In this paper, optimized operating parameters were found using multi-dimensional engine simulation software (KIVA-3V) and micro-genetic algorithm for heavy duty diesel engine. The engine operating condition considered was at 1,737 rev/min and 57 % load. Engine simulation model was validated using an engine equipped with a high pressure electronic unit injector (HEUI) system. Three important parameters were used for the optimization - boost pressure, EGR rate and start of injection timing. Numerical optimization identified HCCI-like combustion characteristics showing significant improvements for the soot and $NO_X$ emissions. The optimized soot and $NO_X$ emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively. Moreover, the optimum results met EPA 2007 mandates at the operating point considered.

An Experimental Study on Exhaust Gas Change of a Heavy-Duty Diesel Engine by EGR (대형디젤기관의 EGR에 의한 배기가스변화에 관한 실험적 연구)

  • 오용석;문병철;한영출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.59-64
    • /
    • 2002
  • The effects of EGR on emissions were investigated by using a six-cylinder, 8 litre, turbo-charged, heavy-duty diesel engine with a low pressure route EGR system. The experiments were performed at various engine loads while the EGR rates were set from 0% to 30%. Hot and cooled EGR are achieved without cooling and with cooling respectively. To verify the possibility of EGR technology for the applications, test were performed with steady state test cycle. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke and PM emissions. Increasing the EGR rate leads to deteriorating specific fuel consumption and power at lower speed and higher load. Also, the reduction rates of NOx emissions for hot and cooled EGR are similar.

A Study on Expansion of Lean Limit for Heavy-Duty DI Engine with Compressed Natural Gas (대형 직접분사식 CNG기관의 희박한계 확장에 관한 연구)

  • Quoc, Tran Dang;Lee, Kwang-Ju;Lee, Jong-Tai
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.735-740
    • /
    • 2011
  • 본 연구에서는 직접분사식 CNG기관의 희박한계를 보다 확장하여 고효율 및 저배기 공해를 실현시키고자 실린더 내에 고압의 천연가스를 직접분사함과 동시에 흡입과정 중 흡기관 내에 소량의 저압천연가스를 보조분사하는 경우의 희박한계 확장 및 제반특성에 대해 검토하였다. 그 결과, 흡기보조분사가 없을 경우 희박한계가 ${\lambda}$ = 1.4 까지였으나, 흡기보조분사율이 5~15% 정도에서는 희박한계가 ${\lambda}$ = 1.5 까지 확장되었다. 이는 흡기보조분사에 따른 혼합기의 혼합율 향상에 기인한 것으로 해석하였다. 연소기간은 줄어들었지만, 흡기보조분사의 효과는 주연소기간에서 조기연소기간보다 강하게 나타났다.

The Characteristic of Power and Emission for Heavy-duty CNG Engine with Direct Injection according to Various Compression Ratio (대형 직접분사식 CNG 기관의 압축비 변화에 따른 기관출력 및 배기특성)

  • Nam, Dae-Woo;Trandangquoc, Trandangquoc;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3090-3095
    • /
    • 2008
  • In this study, variable compression ratio system(VCRS) was applied on the heavy-duty CNG engine and the characteristics of power and emission was investigated according to the increasing of compression ratio. As compression ratio increasing, the increasing of thermal efficiency in direct injection is three times higher than that in port injection. The emission of HC and CO in direct injection is reduced about 14.2%, 17.7% but NOx is increased because of increasing temperature in cylinder.

  • PDF

Design Evaluation of Heavy Duty Heat Exchangers for Compact Steam Boilers (밀집형 증기보일러의 고부하 열교환기 설계평가)

  • Kim, Sungil;Yang, Jongin;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.23-31
    • /
    • 2013
  • Compact steam boiler is a useful heat exchanger in a space-intensive system. There are some constraints in terms of sizing and designing the space confined in the system which is usually used in vessels. In this study, design considerations for heavy duty heat exchangers of compact steam boilers are presented and evaluated. Especially, evaporator tubes of marine boiler which are exposed to a high temperature environment are considered. Also, extended surface designs with a high temperature are examined. In order to determine the criteria with considerations of both heat transfer rate and pressure drop in the heat exchanger, they are evaluated with major variables, such as the tube diameter, the number of tubes, and the tube length. Finally, the design parameters are estimated as the bare tubes are installed instead of the finned tubes.

Finite Element Analysis of Thermal Fatigue Safety for a Heavy-Duty Diesel Engine (대형디젤엔진의 열적 피로안전도 분석을 위한 유한요소해석)

  • 조남효;이상업;이상규;이상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.122-129
    • /
    • 2004
  • Finite element analysis was performed to analyze structural safety of a new heavy-duty direct injection diesel engine. A half section of the in-line 6-cylinder engine was selected as a computational domain. A mapping method was used to project heat transfer coefficients from CFD results of engine coolant flow onto the FE model. The accurate setting of thermal boundary condition on the FE model was expected to result in improved prediction of temperature, cylinder bore distortion, and stresses. Characteristics of high cycle fatigue were investigated by assuming the engine was operated under the following five loading conditions repeatedly; assembly force, assembly force with thermal loading, alternating maximum gas pressure loading at each cylinder combined with assembly force and thermal loading. Distribution of fatigue safety factor was calculated by using it Haigh diagram in which the maximum and the minimum stresses were selected from the five loading cases.

The Performance Test on A Continuous Regeneration DPF in A HD Diesel Engine (대형디젤기관에 있어서 연속재생방식 매연저감장치 성능 테스트)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.788-792
    • /
    • 2006
  • The test was conducted on an 8000cc heavy-duty turbo-charged heavy-duty diesel engine on which continuous regeneration DPF was installed in order to investigate regeneration characteristics fur DPF and engine performance under conditions of standard (430ppm) or ultra low sulfur diesel (50ppm) and the results were compared with each other. Exhaust emissions, CO, HC, NOx, PM and soot were investigated carefully and tested under D-13 and D-3 modes.

  • PDF

A study on an analysis of torsional vibration of a driveline of heavy duty truck (대형트럭 구동계의 저진동 설계 시스템의 개발연구)

  • Hwang, Won-Gul;Kim, Ki-Sei
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.132-140
    • /
    • 1996
  • This paper developes a torsional vibration model of heavy duty truck drive line for simulation of a driving rattle, which causes very annoying noise to driver at the full load driving condition. Test results show a peak in the fit plots at the frequency of the 2nd harmonics of propeller shaft revolution. A 10 d.o.f. lumped parameter nonlinear torsional vibration model is constructed and engine torque variation is calculated from P- .theta. diagram. Time responses are simulated and compared with the test results, which show fairly good agreement. The effects of paramenter change are investigated, and the optimum configuration is proposed.

  • PDF