• Title/Summary/Keyword: Heating source

Search Result 902, Processing Time 0.023 seconds

A Study on the Heating Performance of Ground Source Heat Pump System (지중열원 열펌프 시스템의 난방성능 해석)

  • Woo Joung-Son;Kim Dae-Ki;Lee Se-Kyoun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1175-1182
    • /
    • 2004
  • Installations of vertical boreholes for the ground source heat pump system are expensive to install. One way to reduce the initial cost is to increase the specific heat extraction rate of borehole system. However, as the specific heat extraction rate increases the temperature of borehole fluid decreases with the resultant lower Coefficient Of Performance in Heating(COPH) of heat pump system. The purpose of this study is to provide the basic informations about the performance of heat pump system with the specific heat extraction rate and soil thermal properties such as thermal conductivity and temperature. It is shown that the specific heat extraction rate is the most important parameter for the ground source heat pump system. To obtain the reasonable COPH value (COPH > 3) the heat extraction rate should be about 25 W/m or less. Accurate measurements of soil thermal properties are also very important to design the system properly. The effects of borehole thermal resistances are also examined in this study.

Development of Riverbank Filtration Water Supply and Return System for Sustainable Green House Heating and Cooling (지속가능 온실 냉난방을 위한 강변여과수 취수 및 회수시스템 개발)

  • Cho, Yong;Kim, Dae-Geun;Kim, Hyoung-Soo;Moon, Jong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.20-29
    • /
    • 2012
  • The green house on the waterfront is air-conditioned by a water-source heat pump system with riverbank filtration water. In order to supply riverbank filtration water in alluvium aquifer, the riverbank filtration facility for water intake and recharge, two pumping wells and one recharge well, has been constructed. The research site in Jinju, Korea was chosen as a good site for riverbank filtration water supply by the surface geological survey, electrical resistivity soundings, and borehole surveys. In the results of two boreholes drilling at the site, it was revealed that the groundwater table is about 3 m under the ground, and that the sandy gravel aquifer layer in the thickness of 6.5 m and 3.5 m occurs at 5 m and 7 m in depth below the ground level respectively. To prevent the recharge water from affecting the pumped water which might be used as heat source or sink, the distance between pumping and recharge wells is designed at least 70 m with a quarter of recharged flow rate. It is predicted that the transfer term, the recharge water affects the pumping well, is over 6 months of heating season. Hydrogeological simulation and underground water temperature measurement have been carried out for the pumping and recharge well positions in order to confirm the capability of sustainable green house heating and cooling.

Performance Prediction on the Application of a Ground-Source Heat Pump(GSHP) System in an Office Building (업무용 건물의 지열 히트펌프 시스템에 대한 성능 예측)

  • Sohn, Byonghu;Kwon, Han Sol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.409-415
    • /
    • 2014
  • Ground-source heat pump (GSHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy efficiency. These systems use the ground as a heat source and the heat sink for cooling mode operation. The purpose of this simulation study is to evaluate the performance of a hypothetical GSHP system in an office building and to assess the energy saving effect against the existing HVAC systems (boiler and turbo chiller). We collected monthly energy consumption data from an actual office building ($32,488m^2$) in Seoul, and created a model to calculate the hourly building loads with EnergyPlus. In addition, we used GLD (Ground Loop Design) V8.0, a GSHP system design and simulation software tool, to evaluate hourly and monthly performance of the GSHP system. The energy consumption for the GSHP system based on the hourly simulation results were estimated to be 582.6 MWh/year for cooling and 593.2 MWh/year for heating, while those for the existing HVAC systems were found to be 674.5 MWh/year and 2,496.4 MWh/year, respectively. The seasonal performance factor (SPF) of the GSHP system was also calculated to be in the range of 3.37~4.28.

Heating and Cooling Effect of Portected Horticulture by Geothermal Heat Pump System with Horizontal Heat Exchanger (수평형 지열히트펌프 시스템의 시설원예 냉난방 실증 효과)

  • Ryou, Young-Sun;Kang, Youn-Ku;Kim, Young-Jung;Kang, Keun-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.630-633
    • /
    • 2008
  • Geothermal heat pump systems use the earth as a heat source in heating mode and a heat sink in cooling mode. These systems can be used for heating or cooling systems in farm facilities such as greenhouses for protected horticulture, cattle sheds, mushroom house and etc. A horizontal type means that a geothermal heat exchanger is laid in the trench buried in 1.2 to 1.8 m depth. Because a horizontal type has advantages of low installation, operation and maintenance costs compared to a vertical type, it is easy to be adopted to agriculture. In this study, to heat and cool farm facilities and obtain basic data for practical application of horizontal geothermal heat pump system in agriculture, a horizontal geothermal heat pump system of 10 RT was installed in greenhouse. Heating and cooling performance of this system was estimated. The horizontal geothermal heat pump used in this study had heating COP of 4.57 at soil temperature of $14^{\circ}C$ with depth of 1.75m and heating COP of 3.75 at soil temperature of $7^{\circ}C$ with the same depth. The cooling COP was 2.7 at ground temperature at 1.75m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$.

  • PDF

Fundamental Studies on the Thermal conductivity and Thermal Diffusivity of Rough rice (벼의 열전도계수와 열확산계수에 관한 기초연구)

  • 김만수;고학균
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.53-63
    • /
    • 1979
  • The knowlege of thermal properties of rough rice has become of greate importance to the analysis of heat and mass transfer phenomenon in rice drying and storage process. Some information is available on the thermal properties of rough rice in foreign countries but is not available for these properties in Korea. A fundamental study was made to determine the thermal conductivity and thermal diffusivity of rough rice with line source method and to select current and resistance suitable for these properties from investigating the effect of current and resistance of heating wire on the temperature rise. The result of this study may be summarized as follows ; 1. Even through the power per unit length of heating wires is about the same, the tendency of temperature rise showed a little difference among them , and the suitable range of it for thermal properties was found to be 3.56-5.37w/m. 2. the most desirable resistance and current of heating wire was 18.40 ohm/m, 0.44 amperes among three kinds of heating wires and currents, respectively. because it took 13 minutes or so for the heating wire to reach equilibrium temperature. 3. The thermal conductivity of rough rice was 0.120-0.130 w/m$ ^\circ C$. and thermal diffusivity of it was $5.8210 $\times10^{-8} -9.7529 $\times10^{-8} m^2 /s.$ 4.The thermal conductivity showed a little difference in variation with resistance of heating wire but the variation of current of heating wire at the same resistance did not affect the thermal conductivity , and the thermal diffusivity was not affected by the variation of resistance and current.

  • PDF

A Design and Application of the Ventilating and Heating System of T-103 Trainer Aircraft for Improvement (T-103 훈련기의 환기와 난방 시스템 개선에 관한 연구)

  • Jung, Daehan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.277-284
    • /
    • 2013
  • In this paper, the ventilating and heating system of T-103 trainer aircraft were investigated and redesigned to improve its poor performance. The ventilation system of the trainer was designed to increase the mass flow rate of fresh air by using air intake valves. The flow-in air through the air intake valve is supplied to the cabin by the ram effect of aircraft and the propeller. And the additional heating system was installed to improve the temperature of the cabin inside. The wasted heat from the exhaust gas of the engines was used as heat source of the additional heating system by installing an heat exchanger around the exhaust nozzle. The additional fresh air and the heated air enter the cabin via two ducts mounted under the instrument panel and behind the pedal in the cabin. The additional ventilating and heating system can be controlled by the first pilot and the secondary pilot individually using the control knob equipped separately. After mounting the additional ventilating and heating system, evaluations such as inspection of parts and component, ground run-up test, in-flight test, user test, etc. were conducted. The result of the tests was sufficient to meet the requirements of the manuals, and the pilots were satisfied with the additionally mounted systems.

Deformation Technology for Thick Plate Using Single Pass Line Heating by High Frequency Induction Heating (고주파 유도 단일패스 선상가열 유기 후판 성형 기술)

  • Lee, K.S.;Eom, D.H.;Kim, C.W.;Pyun, S.Y.;Son, D.H.;Gong, G.Y.;Kim, B.M.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.439-449
    • /
    • 2011
  • The temperature distribution and subsequent permanent deformation of SS400 carbon steel plate subjected to an induction-based line heating process were studied by a numerical method involving coupled 3-D electromagnetic-thermal-structural analysis. The numerical study revealed that the amount of permanent deformation is strongly related to the Joule loss caused by such process conditions as input power and moving speed of the heat source. To validate the numerical analysis results, line heating experiments were carried out with a high frequency(HF) induction heating(IH) equipment capable of bending thick plate with the moving accuracy of ${\pm}0.1mm$ in heating coil position. The amount of permanent deformation increased with decreasing moving speed and increasing input power.

Heating Performance Evaluation of the VRF Heat Pump System with Refrigerant Heating Cycle for the Extreme Cold Region (냉매 가열식 대용량 VRF 히트펌프 사이클 설계를 통한 극한랭지 난방 성능 평가)

  • Lee, Sang-Hun;Choi, Song;Kim, Byeng-Soon;Lee, Jae-Keun;Lee, Kang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.571-579
    • /
    • 2011
  • Heat pump systems for commercial building with variable refrigerant flow(VRF) are expanding a market due to high energy efficiency, lower maintenance cost and easy installation comparing with the conventional heat pump with the constant refrigerant flow. In general, heat pump systems degrade the energy efficiency in the extremely low temperature regions. In this study, VRF heat pump system with refrigerant heating is experimentally investigated to overcome the low heating performance in the extremely low temperature regions. VRF heat pump system with refrigerant heating is found out the sufficient heating performance in the -25 degree temperature condition comparing with the conventional heat pump system and is obtained more than 2,500 kPa high pressure in the evaporator at low temperature.

Doping control of Belt Source Evaporation Techniques for Large Size AMOLED

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.930-932
    • /
    • 2007
  • In order to understand the doping control for the belt source evaporation, the Alq3 and NPB were codeposited on the Ta plate to re-sublimate. The very slow heating $(0.1^{\circ}C/s)$ of the Ta plate shows the separated rate signals of Alq3 and NPB sublimated from the Alq3-mixed NPB organic film on Ta plate. The ratio of the vapor rates of Alq3 and NPB was measured as same as that of each sublimation rates. Therefore, the doping control of the belt source evaporation is of the ratio of the vaporization rates of host and dopants.

  • PDF

A Study on Development Potential of Shallow Geothermal Energy as Space Heating and Cooling Sources in Mongolia (몽골의 천부 지열에너지(냉난방 에너지)개발 가능성에 관한 연구)

  • Hahn, Jeong-Sang;Yoon, Yun-Sang;Yoon, Kern-Sin;Lee, Tae-Yul;Kim, Hyong-Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.36-47
    • /
    • 2012
  • Time-series variation of groundwater temperature in Mongolia shows that maximum temperature is occured from end of October to the first of February(winter time) and minimum temperature is observed from end of April to the first of May(summer time). Therefore ground temperature is s a good source for space heating in winter and cooling in summer. Groundwater temperatures monitored from 3 alluvial wells in Ulaabaatar at depth between 20 and 24 m are $(4.43{\pm}0.8)^{\circ}C$ with average of $4.21^{\circ}C$ but mean annual ground temperature(MAGT) at the depth of 100 m in Ulaanbaatar was about $3.5{\sim}6.0^{\circ}C$. Bore hole length required to extract 1 RT's heat energy from ground in heating time and to reject 1 RT's heat energy to ground in summer time are estimated about 130 m and 98 m respectively. But in case that thermally enhanced backfill and U tube pipe placement along the wall are used, the length can be reduced about 25%. Due to low MAGT of Ulaabaatar such as $6^{\circ}C$, the required length of GHX in summer cooling time is less than the one of winter heating time. Mongolia has enough available property, therefore the most cost effective option for supplying a heating energy in winter will be horizontal GHX which absorbs solar energy during summer time. It can supply 1 RT's ground heat energy by 570 m long horizontally installed GHX.