• Title/Summary/Keyword: Heating of agricultural facilities

Search Result 35, Processing Time 0.023 seconds

Analysis of Factors for Heating Period Changes among Greenhouse Grape Farms (시설포도 농가의 가온시기 변화에 미치는 요인 분석)

  • Choi, Don-Woo;Lim, Cheong-Ryong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.209-214
    • /
    • 2017
  • The purpose of this study is to identify the factors that led greenhouse grape farms to delay their heating periods after the coming into force of the Korea-Chile Free Trade Agreement (FTA). Panel data on the cropping (system) changes from 2004 through 2016 were used for the analysis. According to the panel logistic model, the estimated coefficient of the cultivation area was 0.0002, which was statistically significant at the 10% significance level, the estimated coefficient of grape imports was 1.4258, which was statistically significant at the 1% significance level, and the estimated coefficient of the regional dummy was 0.808, which was statistically significant at the 5% significance level. The results indicated that the use of wider cultivation areas, increase in grape imports, and colder climate(in the mid-northern part of Korea) increased the likelihood of delayed heating. The Korean government is offering direct payment programs and business closure support to the greenhouse grape farmers. While these actions can relieve the damage caused by the increase in grape imports, they will not provide the ultimate solution. Various support measures are needed, such as renewing the varieties to meet the changing demand of grape consumers, providing agricultural materials to reduce the heating expenses, and modernizing greenhouse facilities to improve the energy efficiency and reduce the costs.

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange (온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.647-657
    • /
    • 2015
  • To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.

Development of heat exchanger by the utilization of underground water. I - Design for plat fin tube - (지하수 이용을 위한 열교환기 개발. I - 냉각핀의 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.119-127
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger, parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. of The registration design : 0247164, by Korean Intellectual property Office). The fin of exchanger was design of the granulated surface for minimizing fouling factor and dew forms, and also placed parallel to the tube in order to minimized the resistance of flows. 1. Aloo-heat was designed to have 0.03m for inside diameter, 0.036m for outside diameter of tube, 0.0012m for thickness of fin and 0.032m for length of plat fin. 2. t was also designed to have 1.5248m2/m for outside area of heat transfer, 0.0942m2/m for inside area contacting hot liquid, and the ratio (Ra) was 16.1869. 3. Efficiency of the fin was 93 percentage when fin length was 0.032m, and the fin thickness satisfied equation $\frac{h{\rho}}{k}$< 0.2 when it was 0.0012m. 4. According to the performance test of Aloo-heat, as the temperature and rate increased, the heating value also increased, heating value was 504kJ/h·m and 6,048kJ/h·m when it was 60℃, 10 𝑙/min and 80℃, 40 𝑙/min respectively. 5. The test of heating value was confident, because correlation value(R2) was 0.9898 for the temperature and 0.9721 for flow rate of hot liquid, respectively.

Cooling Performance of Horizontal Type Geothermal Heat Pump System for Protected Horticulture (시설원예를 위한 수평형 지열 히트펌프의 냉방성능 해석)

  • Ryou, Young-Sun;Kang, Youn-Ku;Kang, Geum-Chun;Kim, Young-Joong;Paek, Yee
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • It has become a big matter of concerns that the skill and measures against reduction of energy and cost for heating a protected horticultural greenhouse were prepared. But in these days necessity of cooling a protected horticultural greenhouse is on the rise from partial high value added farm products. In this study, therefore, a horizontal type geothermal heat pump system with 10 RT scale to heat and cool a protected horticultural greenhouse and be considered to be cheaper than a vertical type geothermal heat pump system was installed in greenhouse with area of $240\;m^2$. And cooling performances of this system were analysed. As condenser outlet temperature of heat transfer medium fluid rose from $40^{\circ}C$ to $58^{\circ}C$, power consumption of the heat pump was an upturn from 11.5 kW to 15 kW and high pressure rose from 1,617 kPa to 2,450 kPa. Cooling COP had the trend that the higher the ground temperature at 1.75 m went, the lower the COP went. The COP was 2.7 at ground temperature at 1.75 m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$ and the heat extraction rate from the greenhouse were 28.8 kW, 26.5 kW respectively at the same ground temperature range. 8 hours after the heat pump was operated, the temperature of ground at 60 cm and 150 cm depth buried a geothermal heat exchanger rose $14.3^{\circ}C$, $15.3^{\circ}C$ respectively, but the temperature of ground at the same depth not buried rose $2.4^{\circ}C$, $4.3^{\circ}C$ respectively. The temperature of heat transfer medium fluid fell $7.5^{\circ}C$ after the fluid passed through geothermal heat exchanger and the fluid rejected average 46 kW to the 1.5 m depth ground. It analyzed the geothermal heat exchanger rejected average 36.8 W/m of the geothermal heat exchanger. Fan coil units in the greenhouse extracted average 28.2 kW from the greenhouse air and the temperature of heat transfer medium fluid rose $4.2^{\circ}C$after the fluid passing through fan coil units. It was analyzed the accumulation energy of thermal storage thank was 321 MJ in 3 hours and the rejection energy of the tank was 313 MJ in 4 hours.

An Economic Analysis of the Effluent Heat Supply from Thermal Power Plant to the Farm Facility House (화력발전소 온배수열 활용 시설하우스 열공급 모형 경제성분석 연구)

  • Um, Byung Hwan;Ahn, Cha Su
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.6-13
    • /
    • 2018
  • Utilizing the heat of cooling water discharge of coal-fired power plant, pipeline investment costs for businesses that supply heat to agricultural facilities near power plants increase in proportion to installation distance. On one hand, the distance from the power plant is a factor that brings difficulties to secure economic efficiency. On the other, if the installation distance is short, there is a problem of securing the heating demands, facility houses, which causes economical efficiency to suffer. In this study, the economic efficiency of 1km length of standard heat pipeline was evaluated. The sensitivity of the heat pipe to the new length variation was analyzed at the level of government subsidy, amount of heating demand and the incremental rate of pipeline with additional government subsidy. As a result of the analysis, it was estimated that NPV 131 million won and IRR 15.73%. The sensitivity analysis showed that NPV was negative when the length of heat pipe facility exceeded 2.6 km. If the government supports 50% of the initial investment, the efficiency is secured within the estimated length of 5.3 km, and if it supports 80%, the length increases within 11.4 km. If the heat demand is reduced to less than 62% at the new length of the standard heat pipe, it is expected economic efficiency is not obtained. If the ratio of government subsidies to initial investment increases, the elasticity of the new bloc will increase, and the fixed investment, which is the cost of capital investment for one unit of heating demand, will decrease. This would result in a reduction in the cost of production per unit, and it would be possible to supply heat at a cheaper price level to the facility farming. Government subsidies will result in the increased economic availability of hot plumbing facilities and additional efficiencies due to increased demand. The greater government subsidies to initial investment, the less farms cost due to the decrease in the price per unit. The results of the study are significant in terms of the economic evaluation of the effectiveness of the government subsidy for the thermal power plant heat utilization project. The implication can be applied to any related pilot to come.

Living Conditions of the Rural Elderly: Clothing, Nutrition, Housing, and Psychological Adjustment (농촌지역 노인의 생활실태 조사연구 -의.식.주생활 및 심리적 적응을 중심으로-)

  • 윤복자
    • Journal of the Korean Home Economics Association
    • /
    • v.28 no.4
    • /
    • pp.65-86
    • /
    • 1990
  • Living conditions of the rural elderly were assessed in terms of clothing behavior, health and nutritional status, housing and envioronmental condition, and psychological adjustment. The subjects were eighty individuals over sixty residing in the rural community of Iksan-kun, Chollabukdo. The interview method using questionnaires, direct measurement, and observation was used for this study. Data were compared with those obtained from a previous study of the elderly residing in an urban area. Clothing behavior showed that the elderly residing in the rural community were more concerned about plain and conservative design of clothes than their urban counterparts. Special protective clothes for cropdusting with agricultural chemicals had not been prepared. The following urgent needs were pointed out: development and supply of agricultural chemical protective clothing and development and education of appropriate washing and clothing care methods. The health status of the elderly was generally good, but poor eating habits were found more frequently in the rural elderly than among the urban dwellers. Several dietary nutrient intakes were insufficient. Contrasting the urban elderly with the rural group, it was found that the urban group lacked sufficient vitamin A and vitamin C and the urban women had insufficient calorie whereas the rural group was deficient in protein, vitamin A, calorie, and fat. A significant relationship was found between dietary nutrient intake and health index, food habit points, self recognized health status, meal satisfaction, and economic status. Urgent needs of the development of a nutrition education program for the elderly were pointed out. Most of elderly residing in the surveyed rural communities were living alone or with their spouse only, therefore only one room was used among the three or four available rooms. Most of the rural elderly were living either in a traditional Korean house built with differing floor levels or in a modified Korean style house. Minimal modernization had been made for kitchen facilities such as sink and gas range or for heating facilities with the briquette boiler. However, sanitary space such as lavatory and bathroom had not been remodeled. A housing welfare program for rural communities should be implemented at the national level. The comparison of psychological characteristics of the rural elderly with their city counterparts revealed that the rural elderly have a more stable psychological status and optimistic attitude than those living in a city. However, it was found that most of the elderly did not have any future plan. Community programs for the elderly including hobbies or leisure activities or education programs to generate close interpersonal relationships with their children should be developed and provided.

  • PDF

Actual State of Structures and Environmental Control Facilities for Tomato Greenhouses in Chungnam Region (충남지역 토마토 재배온실의 구조와 환경조절설비 실태분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.73-85
    • /
    • 2009
  • An investigation was conducted to get the basic data for establishing structural safety and environmental management of tomato greenhouses in Chungnam region. The contents of the investigation consisted of actual state of greenhouse structures and environmental control facilities. Most of greenhouses were arch type single-span plastic houses and they had too low height for growing tomatoes. Frameworks of multi-span greenhouses were suitable, but those of single-span were mostly insufficient. Every greenhouse had thermal curtain movable or covering fixed inside the greenhouse for energy saving, and heating facilities were mostly warm air heater. Irrigation facilities were mostly drip tube and controlled by manual operation or timer. Almost all of the greenhouses didn't install high level of environmental control facilities such as ventilator, air circulation fan, $CO_2$ fertilizer, insect screen, supplemental light, and cooling device.

  • PDF

Heating Performance Analysis of the Heat Pump System for Agricultural Facilities using the Waste Heat of the Thermal Power Plant as Heat Source (발전소 폐열을 이용한 농업시설용 히트펌프시스템의 난방 성능 분석)

  • Kang, Youn Koo;Kang, Suk Won;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung;Ryou, Young Sun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.317-323
    • /
    • 2017
  • In this study, the heating performance and the energy saving effect of the heat pump system using hot waste water(waste heat) of the thermal power plant discharged from a thermal power plant to the sea were analyzed. The greenhouse area was $5,280m^2$ and scale of the heat pump system was 120 RT(Refrigeration Ton), which was divided into 30 RT, 40 RT and 50 RT. The heat pump system consisted of the roll type heat exchangers, hot waste water transfer pipes, heat pumps(30, 40, 50 RT), a heat storage tank and fan coil units. The roll type heat exchangers was made of PE(Poly Ethylene) pipes in consideration of low cost and durability against corrosion, because hot waste water(sea water) is highly corrosive. And the heating period was 5 months from October to February. During the heating performance test(12 hours), the inlet water temperature of evaporator was changed from $32^{\circ}C$ to $26^{\circ}C$, and heat absorption of he evaporator was changed from 175 kW to 120 kW. The inlet water temperature of the condenser rose linearly from $15^{\circ}C$ to $50^{\circ}C$, and the heat release of condenser was reduced by 40 kW from 200 kW to 160 kW. And the power consumption of the heat pump system increased from 30 kW to 42 kW. When the inlet water temperature of condenser was $15^{\circ}C$, the heating COP(Coefficient Of Performance) was over 7.0. When it was $30^{\circ}C$, it dropped to 5.0, and when it was above $40^{\circ}C$, it decreased to less than 4.0. It was analyzed that the reduction of heating energy cost was 87% when compared to the duty free diesel that the carbon dioxide emission reduction effect was 62% by recycling the waste heat of the thermal power plant as a heat source of the heat pump system.

An Analysis of Heat Transfer Coefficient of Soil Surface in Closed Ecosystems Using CFD (CFD를 이용한 폐쇄생태계 내 토양표면의 열전달계수 분석)

  • Roh, Sang-Mok;Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.1
    • /
    • pp.85-95
    • /
    • 2006
  • A model experiment has been performed to get the heat transfer coefficient on the soil surface in the closed ecosystem. The heat flux on the soil surface was measured and the heat transfer coefficient was derived in the following two cases with 5-stepped control of inside air current speed. One case was that heat flowed from air to soil and the other case was that heat flowed from soil to air. Three dimensional CFD model has been set to simulate thermal environment in the closed ecosystem including soil layers. The standard $k-{\varepsilon}$ model of the CFD program was chosen for turbulence model and heating wire buried in the soil layers was set as heat source option to simulate the case when the temperature of soil surface was higher than that of inside air in the closed ecosystem. Between one case that heat flowed from air to soil and the other case that heat flowed from soil to air, there were big differences in the temperature distribution of soil layers and the heat transfer coefficient of the soil surface. The increasing rate of heat transfer coefficient on each case according to the increase of inside air current speed was similar to each other and it respectively increased linearly. But the heat transfer coefficient on the case that heat flowed from soil to air was much bigger than that of the other case. The model was validated by comparing simulated values of CFD model with measured values of the model experiment. Simulated and measured temperature of inside air and soil layers, and heat transfer coefficient of the soil surface were well accorded and the range of corrected $R^2$ was 0.664 to 0.875. The developed CFD model was well simulated in parts of the temperature of inside air and soil layers, the distribution of the inside air current speed, and heat transfer coefficient of the soil surface were able to be quantitatively analyzed by using this model. Therefore, the model would be applied and used for analysis of heat transfer coefficient between air and surface in various agricultural facilities.

  • PDF

Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory (자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구)

  • Park, Dong Yoon;Jang, Seong-Teak;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.