Journal of The Korean Society of Agricultural Engineers
/
v.57
no.5
/
pp.37-42
/
2015
In order to provide fundamental data for the creation of environmental design criteria for horticultural facilities, we developed a method to easily calculate the seasonal heating load applying heating degree-hour while taking into account heating load reductions due to solar radiation in the daytime, and reviewed through greenhouse heating experiments. Heating experiments and measuring meteorological environments were carried out in three greenhouses located at Buyeo, Cheonan, and Buan, and we derived reduction factors of seasonal heating load according to hours of sunshine. Daily mean hours of sunshine during the experiment period in each of the greenhouse was 4.0 to 8.3 hours, and the reduction factor of seasonal heating load was 0.64 to 0.85, has been shown to decrease linearly with the increase in hours of sunshine. A method to estimate the seasonal heating load for greenhouses was developed using the reduction factor of seasonal heating load derived from the greenhouse heating experiment, including the adjustment factor of seasonal heating load according to hours of sunshine. The developed method was validated through heating experiments in a greenhouse located at Cheonan. Greenhouse seasonal heating loads calculated by the method developed in this study were analyzed to show the estimate error of 1.2 to 5.0%. It showed that the accuracy increased 2.3 times more than when using the heating load reduction factor of 0.75 applied uniformly in previous studies. Thus, the calculation method of seasonal heating load for greenhouses considering hours of sunshine developed in this study could be utilized for energy estimation, management planning, and economic evaluation in greenhouse design.
Government Geothermal Cooling-Heating Projects has made efforts to reduce GHG(Greenhouse Gas) emissions and to manage cost of greenhouse farm households. This study evaluated the economic benefits of heating load rate of change by comparing Geothermal Cooling-Heating System with the existing system(greenhouse diesel heating) in the Government Geothermal Cooling-Heating Projects. Economic analysis results shows that, 1) When installing the Cooling-Heating system according to the ratio of 70% heating load in policy standards, the geothermal cooling-heating system has economic efficiency with greenhouse type or scale independent because the investment cost is recovered within 7 years. And It was more economic efficiency the ratio of 50% heating load than70% heating load. 2) When installing the Cooling-Heating system according to the glass greenhouse of the ratio of 90% heating load, pay period of investment cost is recovered within 5 years. Therefore it is necessary to apply flexible heating sharing according to greenhouse type or scale.
This study aims to evaluate the correlation between vertical solar radiation and the level of heating load according to the location and type of housing in multi-family apartments. This study shows that heating load is related with factors such as wall loss, window loss, ventilation loss and solar radiation gain. The heating load increases in the order of the middle floors, the highest floors and the lowest floors. The lowest and the highest floors are the most vulnerable floors, and it should be as emphasized as the middle floors. The heating load saving proposal contains 52 Alt. that shows heating load savings from min. 4% to max. 49%. The goal is to reduce the heating load of the highest and the lowest floors to the level of the middle floors. The result showed that there are 3 Alt. for the lowest floors and 16 Alt. for the highest floors as the heating load saving proposal. This study suggests integrated application to compose saving elements of heating load. so it could be utilized as a data for the construction of passive houses.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.27
no.6
/
pp.283-292
/
2015
A model of apartment heating load in a district heating system could be useful in the management and utilization of energy resources, since it could predict energy usage and so could assist in the efficient use of energy resources. The heating load in a district heating system varies in a highly nonlinear manner and is subject to many different factors, such as heating area, number of people living in that complex, and ambient temperature. Thus there are few published papers with accurate models of heating load, especially in domestic literature. This work is concerned with the modeling of apartment heating load in a district heating system in winter, using the reduced least square support vector machine (LS-SVM), and with the purpose of using the model to predict heating energy usage in domestic city area. We collected 23,856 pieces of data on heating energy usage over a 12-week period in winter, from 12 heat exchangers in five apartments. Half of the collected data were used to construct the heating load model, and the other half were used to test the model's accuracy. The model was able to predict the heating energy usage pattern rather accurately. It could also estimate the usage of heating energy within of mean absolute percentage error. This implies that the model prediction accuracy needs to be improved further, but it still could be considered as an acceptable model if we consider the nonlinearity and uncertainty of apartment heating energy usage in a district heating system.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.28
no.9
/
pp.355-360
/
2016
Continuing to the modeling of heating load, this paper, as the second part of consecutive works, presents LS-SVM (least square support vector machine) based model of winter time apartment hot water supply load in a district heating system, so as to be used in prediction of heating energy usage. Similar, but more severely, to heating load, hot water supply load varies in highly nonlinear manner. Such nonlinearity makes analytical model of it hardly exist in the literatures. LS-SVM is known as a good modeling tool for the system, especially for the nonlinear system depended by many independent factors. We collect 26,208 data of hot water supply load over a 13-week period in winter time, from 12 heat exchangers in seven different apartments. Then part of the collected data were used to construct LS-SVM based model and the rest of those were used to test the formed model accuracy. In modeling, we first constructed the model of district heating system's hot water supply load, using the unit heating area's hot water supply load of seven apartments. Such model will be used to estimate the total hot water supply load of which the district heating system needs to provide. Then the individual apartment hot water supply load model is also formed, which can be used to predict and to control the energy consumption of the individual apartment. The results obtained show that the total hot water supply load, which will be provided by the district heating system in winter time, can be predicted within 10% in MAPE (mean absolute percentage error). Also the individual apartment models can predict the individual apartment energy consumption for hot water supply load within 10% ~ 20% in MAPE.
In order to provide basic references for the design of heating on simple silkworm rearing house, the actual change of heating load coefficient by progress of adult silkworm rearing day from the reared in silkworm rearing house, the heating load coefficient by types of silkworm rearing houses and the heating requirement and the maximum heating load by types of silkworm rearing houses were determined. The results obtained from the study were as follows : 1. The average heating load coefficients of NS, OS and CC type simple silkworm rearing houses were $24.1KJ/m^2-hr-^{\circ}C$, $19.8KJ/m^2-hr-^{\circ}C$, and $10.8KJ/m^2-hr-^{\circ}C$, respectively. 2. The change of heating load coefficient by progress of silkworm rearing day after reared into simple silkworm rearing house could be expressed as Fig. 4. 3. Heating degree-hour for adult silkworm rearing in Suweon district was calculated as $951.6^{\circ}C-hr$ for spring season and $610.5^{\circ}C-hr$ for autumn season. 4. Yearly heating requirement of the NS type was estimated twice more than that of the CC type. Thus, some kinds of reinforced thermal adiabatic facilities is desirable for NS type. 5. The time for maximum heating load was turned out at the 4th instar during the spring season and after the mounting during the autumn season. 6. This study was performed in Suweon district. However, the estimated and analyzed data could be adapted to the major silkworm rearing district if their meteorology data were adjusted.
Journal of The Korean Society of Agricultural Engineers
/
v.48
no.5
/
pp.51-60
/
2006
In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.12
no.1
/
pp.26-32
/
2000
Design load calculations which depend on the thermal characteristics of the building structure such as the wall, roof, and fenestration provide the basic data for selecting an HVAC system and its equipment. Most of domestic multi-family houses include a high thermal storage layer like massive concrete structure and a floor heating structure. This study is to compare the results of the design heating load between steady state and unsteady state calculation in order to comprehend the thermal storage effect in multi-family houses. The design heating load under the steady state calculation is estimated from 5.4% to 7.8% larger than that under the unsteady state in the typical floor of a multi-family house model. The design heating load considered the safety factors like a orientation and location factor also is 21.4% to 26.5% larger than that by the unsteady state calculation. So, the safety factors for use of the practicing engineer are analyzed as the main factor of a heating plant oversizing.
To find out heating load and to determine the power of heat pump compressor for the Ondol room heating the COP of heat pump, the variation of Ondol room air temperature, the variation of ambient temperature and power consumption of heat pump are analyzed. The results from this study were summarized as follows: 1. The COP of the heat pump in close loop decreased as the ambient air temperature. The COP was 2.26 when the temperature difference of condenser was $20\pm3^{\circ}C$. 2. The Ondol surface temperature was $25\pm3^{\circ}C$ when the hot water of $40^{\circ}C$ was supplied from hot water storage tank to the Ondol and the temperature difference between the Ondol surface and the room air temperature was $7~8^{\circ}C$. 3. The ratio of thermal conduction heating load to total heating load in Ondol heating space was found to be 83% and ratio of ventilation heating load was 17%. Therefore, the thermal conduction heating load was confirmod to be a major heating load in Ondol heating space. 4. In case of the ambient temperature of $3.2^{\circ}C$, the efficiency of heat exchange of Ondol heating system was 85%. 5. The heating load per Ondol heating surface area and volume of Ondol room space were theoretically analyzed. In case of the room temperature of $20^{\circ}C$ and the ambient temperature of $-3.2~3.8^{\circ}C$, the heating load per Ondol surface area was 115.8~167.6kJ/h ㆍ㎥ and per Ondol mom space volume was 50.2~72.7kJ/h ㆍ㎥. 6. The compressor power of heat pump fur the Ondol room heating could be determined with the heating load analyzed in this study In case of the Ondol room air temperature of 17~2$0^{\circ}C$ and the ambient temperature of -5~3.8$^{\circ}C$, the compressor power of heat pump per Ondol surface area was analyzed to be $2.3\times10^{-2}psm^2$, and per volume of Ondol room space $1.0\times10^{-2}1.4\times10^{-2}ps/m^2$ps.
Leading developed countries have studied energy self-sufficient houses such as zero or low energy buildings to reduce energy consumption for buildings since the early 1990s. Moreover, some developed countries have actually constructed self-sufficient houses and operated them for demonstration, expanding use of such houses. Korea has also established Zero Energy Solar House(ZeSH) and studied energy independence. Therefore, this study analyzed research result regarding ZeSH, self-sufficient energy house hold of Korea, found out technologies used for heating energy independence, used building interpretation program(ESP_r) to evaluate performance of each factors and analyzed energy reduction quantitatively. Results from the research are as follows: Reduction rate of actual detached house's heating load was also analyzed quantitatively depending on application of each technology. When each factor was applied step-by-step, annual reduction rate of heating load depending on increase in insulation thickness reached 6.6~22.2 %. Annual reduction rate of heating load depending on increase insulation thickness, and change in window heating performance and area ratio reached 31.5 %. Annual reduction rate of heating load through high-sealing and high-insulation depending on change in leakage rate reached 40.0~88.9 %. Annual reduction of heating load, when Mass Wall and attached sun space was applied were applied reached 28.5~39.2 %, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.