• 제목/요약/키워드: Heating experiment

검색결과 869건 처리시간 0.024초

운전자의 심리·생리 반응을 고려한 승용차 쾌적 난방 모드에 관한 연구 (Research on the Thermal Comfort Heating Mode Considering Psychological and Physiological Response of Automobile Drivers)

  • 김민수;금종수;박종일;김동규
    • 설비공학논문집
    • /
    • 제30권3호
    • /
    • pp.149-157
    • /
    • 2018
  • In this research, the psychological and physiological reactions of the driver were measured during winter to evaluate thermal comfort. The experiment was conducted using 3 different cases which are hot air heating, warm-wire seat heating and hot air & warm-wire seat heater operating simultaneously. With regard to psychological reaction, the warm-wire heating mode was the most preferred. The reason is that it is dry in other cases. With regard to EEG response, thermal comfort increased by 37% in warm air mode heating. In addition, when the warm-wire heating mode and the hot air & warm-wire heating mode were simultaneously operated, the thermal comfort continuously increased by between 17% and 20% for 20 minutes after boarding. Under the change of the autonomic nervous system, the thermal stress level increased by 23% after 15 minutes on board in the hot air heating mode and decreased continuously by 13% during the warm-wire seat heating mode. We recommended the hot air heating mode is only used for a short time to raise the inside temperature during the early boarding period and that warm-wire seat heating mode be actively utilized.

저온영역에서 단열용기를 이용한 연료전지 모의 실험 (Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region)

  • 조인수;권오정;김유;현덕수;박창권;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구 (Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted)

  • 이진국;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제35권6호
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.

페리미터존의 에어배리어 공조방식에 따른 실내 열환경 평가 (Evaluation of Indoor Thermal Environment According to Air-Barrier Air Conditioning System in Perimeter Zone)

  • 박병윤;함흥돈;손장열
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.370-376
    • /
    • 2005
  • For the purpose of investigating the effective removal of heating/cooling load from light-weighted building envelope, two air-conditioning systems, conventional parameter air-conditioning system and air-barrier system, are evaluated and compared by both experiment and simulation with six different cases during heating and cooling season. In addition, the characteristics of window-side building thermal load are assessed by varying supply air velocity in order to seek the optimal system operation condition. The results are as follows. 1) Air-barrier system is more effective to remove heating/cooling load at perimeter zone than conventional parameter air-conditioning system. Moreover, the better effectiveness appears during cooling season than during heating season. 2) The experiment during cooling season provides that indoor temperature of air-barrier system shows $1^{\circ}C$ less than that of the conventional system with similar outdoor air temperature profile, and indoor temperature distribution is more uniform throughout the experimented model space. It concludes that air-barrier system can achieve energy saving comparing to the conventional system. 3) The capturing efficiency of air-barrier system is 0.47 on heating season and 0.2 on cooling season with the same supply air volume. It results that the system performs effectively to remove building thermal load, moreover demonstrates high efficiency during cooling season. 4) The simulation results provide that capturing efficiency to evaluate the effective removal of building load from perimeter zone shows high value when supply air velocity is 1 m/s.

공동주택에서 에너지 파일을 이용한 지열히트펌프 시스템의 성능 분석 (Performance Evaluation of Ground Source Heat Pump System Utilizing Energy Pile in Apartment)

  • 이진욱;김태연;이승복
    • KIEAE Journal
    • /
    • 제12권4호
    • /
    • pp.41-46
    • /
    • 2012
  • In Korea, Apartment houses recently occupy over 80% of all buildings. Ground source system has to be designed to consider feature of apartment house. Most apartment houses use PHC pile to get a bearing power of the soil. Therefore, the purpose of this study is to evaluate performance of ground source heat pump system utilizing energy pile under apartment. Object of experiment is low-energy experiment apartment in Song-do and Energy Pile are applied to 80%, 100% energy reduction model for heat-source. First, performance evaluation of Energy Pile geothermal system was done during summer season. As a result, The COP(coefficient of performance) about geothermal heatpump was approximately 5-6 while cooling. In winter season, Long experiment was performed because it was very important to evaluate ground condition for long time. During heating experiment, Indoor room set temperature was $20^{\circ}C$ and kept constant by heating. Coefficient of performance for heat pump and overall system was calculated. It was 3.5-4.5 for COP and 2.5-3.7 for system COP.

Gasdynamic Adjustment at Modeling of Flight Conditions Appropriate M=6

  • 우관제
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2000년도 제14회 학술강연논문집
    • /
    • pp.8-8
    • /
    • 2000
  • In this paper are presented main power and gasdynamic characteristics of C-l6VK hypersonic test cell of Research Test Center of CIAM. Gasdynamic adjustment of the C-l6VK test cell was carried out with the working section constructed on scheme of Ramjet/scramjet test in free stream. Gasdynamic adjustment was conducted stage by stage in tile following sequence. First, check and preparation of all technical systems and checking measuring system. Than determination of the characteristics of test cell on cold (without the heating of air at entrance) regime and determination of the characteristics of test cell on regimes with the heating of air. Finally determination of tile characteristics of test cell with the loading of the working part by object. On tile final stage of gasdynamic adjustment two experiments with tile axisymmetric Scramjet model loaded into the working part of test cell were conducted. The first experiment was conducted with the purpose of determination of flow parameters with the object leaded into the working part and verification of experiment cyclogram. The second experiment was conducted with injection of hydrogen into the combustion chamber of object, that is tile conditions on test cell simulated Scramjet flight Mach number M = 6. Such methodology of gasdynamic adjustment allows to determine influence of experimental object on flow parameters in the working part at different conditions of experiment (with the burning in combustion chamber of object and without the homing), and also to compare flow characteristics in the object duct.

  • PDF

아파트 적용 태양열 난방 및 급탕시스템의 열적 거동에 관한 실험연구 (Experimental Study on the Thermal Behavior of Solar Space Heating & Hot Water System in Apartment)

  • 신우철;백남춘;김종현
    • 한국태양에너지학회 논문집
    • /
    • 제26권4호
    • /
    • pp.127-134
    • /
    • 2006
  • In this paper, an experiment was carried out to investigate the thermal behavior and performance on a solar space heating & hot water system in an apartment. Measurement was continued for 6 months between January 1st 2004 and June 31th 2004. The results show that there is no problem in control and operation in case of connection this system with conventional space heating and hot water system, and that the thermal performance of this system and indoor thermal environment is good.

알루미늄소재의 재가열 공정에서 구상화의 크기가 기계적 성질에 미치는 영향 (The Effect of globule size on the Mechanical Properties in Reheating Process of Aluminium Alloys)

  • 박상문;강충길
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.155-164
    • /
    • 2002
  • One of the important steps on semi-solid forming Is the reheating process of raw materials to the semi-solid state. This Process is not only necessary to achieve the required SSM billet state, but also to contro1 the microstructure of the billet. In reheating process, the globule size is determined by the holding time of last heating stage. Therefore, some experiments to investigate the relationship between the mechanical properties and the holding time in the last heating stage was performed. The alloys used in this experiment were 357, 319 and A390 alloys. The experiments of reheating were performed by using an Induction heating system with the capacity of 50kw. This paper shows the evolution of the microstructure according to the holding time of last reheating stage. Furthermore, to evaluate the effect of globule size controlled by holding time in last heating stage uniaxial tension test was performed. The strain-stress curves were plotted according to the holding time.

고주파 평면가열에 의한 중밀도섬유판(MDF)의 핑거접합 (Finger Jointing of MDF by High-frequency Plate Heating)

  • 소원택
    • 한국가구학회지
    • /
    • 제17권2호
    • /
    • pp.25-34
    • /
    • 2006
  • This experiment was carried out to investigate the high-frequency gluing characteristics of poly vinyl acetate emulsion adhesive(PVAc) on MDF edge-glued boards. The edge-glued boards were glued lengthwise with butt, scarf, or finger joint. The wastes of MDF boards were reused as board materials. The obtained results are summarized as follows; the bending strength of edge-glued MDF increased slightly with the HF heating time, but the economically desirable heating time was 6 minutes. The bending and tensile strength of edge-glued MDF were high with scarf, finger and butt joint, in order. The strength of finger jointed MDF showed 80% of scarf jointed MDF. The effects of location of finger joints on the bending strength of edge-glued MDF were larger than those of the numbers of finger joints. The bending strength of edge-glued MDF with one joint on the middle position showed 40% decrease in comparison with non-jointed MDF.

  • PDF