• Title/Summary/Keyword: Heating cost

Search Result 581, Processing Time 0.028 seconds

Verification Experiment and Analysis for 6kW Solar Water Heating System(Part 3 : Optimum Design and Economic Evaluation) (6kW급 태양열 온수급탕 시스템의 실증실험 및 분석(제3보 최적설계 및 경제성평가))

  • Choi Bong Su;Lee Bong Jin;Kang Chaedong;Hong Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2005
  • The goal of the present paper is to show the optimum design and operation conditions on 6 kW solar water heating system by using computer simulation with verified modelling. As the object functions, we took not only the amount of acquired and auxiliary heat but LCC, which has a relative importance and decisive role in economy. As expected, the maximum heat is acquired at the slope of collector with the equal degree to the latitude, facing the south. The capacity increase of the circulation pump and the storage tank lead to the increase of acquired heat and the decrease of auxiliary heat, but do not necessarily give economical advantages owing to additional electrical power consumption. In the present system, the minimum LCC can be obtained at the storage tank volume of 450 L and the mass flow rate of 0.344 kg/s.

A Study on the Deformation of Cable Pipes via Induction Bending (고주파 벤딩을 통한 케이블 파이프의 변형에 관한 연구)

  • Joo, Yi-Hwan;Qin, Zhen;Moon, Seongmin;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.79-84
    • /
    • 2020
  • Induction bending via high-frequency heating is widely used for manufacturing pipe and section steel bends. It allows productivity improvement, unit cost reduction, delivery time compliance, and good mechanical properties. The recent increase in high-end vessels and offshore plants has raised the demand for high-frequency bending, which should improve the product quality and reduce the costs by simplifying the fabrication process; therefore, the characteristics and performance of this technique must be studied and proper design technology is required. During hot pipe bending via induction heating, the outward wall thickness of the pipe is thinned due to tensile stress and this thickness reduction cannot exceed 12.5%. This study focused on pipe bends with a bending curvature of 5D and their optimization design; in particular, the conditions that can both improve the productivity of the high-frequency bending process and keep the maximum thickness reduction below 12.5% were determined.

A Study on the Planning of Urban Energy Supply Systems Including Co-generation System (도시지역 에너지 공급체계 개선방안 검토 연구)

  • Woo, Nam-Sub;Lee, Tae-Won;Kim, Yong-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.177-182
    • /
    • 2009
  • The purpose of this study is to investigate planning of urban energy supply systems configuration and operating conditions for the district heating and cooling system using combined heat and power system. Generally the district heating and cooling system has been known to one of the effective way for energy saving, cost reduction and demand side management of energy. Economical analyses were carried out and operating characteristics for some systems were examined in terms of GER factor which represents to the ratio of gas and electricity costs. Rates of the energy consumption and the $CO_2$ emission were compared from the system configuration of the energy supply system with new district cooling system with the conventional one.

  • PDF

Assessing the Economic and $CO_2$ Emission Reductions Viability of Domestic Ground-Source Heat Pumps (단독주택용 지열 열펌프 시스템의 경제성과 이산화탄소 배출 저감 가능성 평가)

  • Sohn, Byong-Hu;Kang, Shin-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.64-69
    • /
    • 2009
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HVAC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total greenhouse gas emissions than the alternative HVAC systems considered in this work.

  • PDF

Development of Shrink-Fit Tool Holder using Shape Memory Alloys (형상기억합금을 이용한 열박음 공구홀더 개발)

  • Shin, Woo-Cheol;Ro, Seung-Kook;Kim, Byung-Sub;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.889-894
    • /
    • 2010
  • Conventional shrink-fit tool holders have positive features, such as high accuracy, high strength, high stiffness and low sensitivity to centrifugal forces, but they require heavy investments for heating and cooling equipment. Generally the heating equipment has to heat the tool holder up to $200{\sim}300^{\circ}C$ for tool changes. This paper introduces a novel shrink-fit tool holder that is able to unclamp a tool at $40{\sim}50^{\circ}C$. This feature makes it possible to switch between the clamped and unclamped states by using a simple device, which has lower power, smaller size and lower cost than the heating equipment of the conventional shrink-fit tool holders. The proposed shrink-fit tool holder is able to expand its tool hole by using the shape memory alloys which are integrated in the tool holder body. Performances of the SMA shrink-fit tool holder were evaluated experimentally. The experimental results confirm that the proposed tool holder is feasible in aspects of clamping/unclamping operations, clamping force and repeatability of tool setup.

An Experimental Study on the Evaluation of Mechanical Properties of CFT Column by Unstressed Test and Stub Specimen (비재하 가열시험 및 Stub 시험체를 활용한 CFT기둥의 역학적 특성평가에 관한 실험적 연구)

  • Lee, Dae-Hee;Lee, Tae-Gyu;Lee, Eui-Bae;Kim, Young-Sun;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.209-213
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) because material and method are required to be diversification and High-Performance according to increase the super-high structure. But, CFT column lose bearing capacity under fire because steel tube is exposed to outside. As a result, structure is collapsed and then it cause much damage. In case of the Europe, Japan and America, they have studied the fire-resistance performance of CFT under fire for a long time. However, it would have hardly studied it in domestic because it is much difficulty about experiment machine and cost. So it is needed base on fire-resist performance of CFT under fire. Therefore, this study dynamic specificity of stub column which made tester of stub column based on facts of strength and mixing fiber evaluated used heating and load testing machine. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF

Effect of the Exhaust Heat from Micro Gas Turbine on the Performance Characteristics of the Absorption Chiller (마이크로가스터빈 배열부하가 배가스흡수식 냉온수기의 성능에 미치는 영향)

  • Choi Kyoung-Shik;Sohn Wha-Seung;Kim HyoungSik;Rhim Sang-Kyu;Hur Kwang-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.158-162
    • /
    • 2006
  • Micro gas turbine (MGT) has received attention recently as a small-scale distributed power source. Due to many advantages such as their small size, low maintenance cost and minimal vibrations during operation, they are expected to become widespread in a wide range of applications. The exhaust heat emitted by the MGT is in the form of an exhaust gas that is about $270^{\circ}C$ which is an extremely clean gas. Korea Gas Corporation (KOGAS) has researched performance characteristics of a cogeneration system combining 28kW class MGT and 13 USRT class absorption hot and chilled water generator in the local condition. The present results of this study can be summarized as follows: (1) in heating mode, the total efficiency of cogen. system is about $65\%$ and heating capacity is 33kW at 25kW MGP power (2) in cooling mode, COP is about 0.6 at 22kW MGT power.

Effects of Various Factors on the Energy Consumption of Korean-Style Apartment Houses (한국형 아파트의 냉난방 에너지에 미치는 제 인자의 영향)

  • 유호선;현석균;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.972-980
    • /
    • 2002
  • This work is aimed at estimating the effects of various factors on the energy consumption of Korean-style apartment houses using TRNSYS. The factors considered here include the nominal size of floor area, type of remodeling, azimuth, sidewall insulation, and window type. Based on some assumptions, an actual apartment house is simplified into a model that is used for thermal load calculations. The simplified model is validated by showing a good agreement with the actual one in the predicted result. Remodeling balconies into unconditioned buffer spaces yields a favorable thermal performance in comparison with the original type regardless of the nominal size. Incorporating balconies into a conditioned indoor space leads to sharp increases in thermal loads, which must be avoided in view of energy conservation as well as structural problem. A quantitative assessment on the azimuthal effect indicates that the heating energy can be saved up to 16% by taking the south or southeast direction. Reduction in the heating load with enhancing the sidewall insulation is gradual, so that a cost-effectiveness analysis may be needed when amending the regulations concerned. Glazing appears to significantly affect the heat transfer through window. A typical case illustrates that the heating load is decreased about 25% by simply adopting triple glazing instead of double glazing.

The Performance Test and the Feasibility Study for a Dual-Source Heat Pump System Using the Air and Ground Heat Source (공기 및 지열 이용 Dual-Source 히트펌프 시스템의 성능실험 및 경제성 분석)

  • Nam, Yujin;Chae, Ho-Byung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.212-217
    • /
    • 2014
  • Recently, the use of renewable energy has been increased due to growing concern on the energy-saving at buildings and the reduction of $CO_2$ emission. In the field of architecture, to reduce the energy consumption of heating, cooling and hot water supply, heat pump systems with renewable energy has been developed and used in various applications. However, there have been many of researches on the large-scale commercial heat pump systems, but the research and the field application of a compact heat pump system is rare. Therefore, in order to develop the compact heat pump for the small-scale residential building, this study conducted the performance test and feasibility study for a hybrid heat pump using the heat source of air, solar and ground. In the results of experiments through a trial product, the average COP of cooling mode with ground heat source was 4.75, and it of heating mode was 4.03. Furthermore, the average COP of cooling mode with air heat source was 2.60, and it of heating mode was 2.92. Finally, payback period of the system was calculated as 9.2 years.

The Application and Evaluation of Heating and Cooling System by Seawater Heat Source for Research Center Building in Jeju (제주지역 연구소 건물의 해수열원 냉난방시스템 적용 및 평가)

  • Park, Jin-Young;Kim, Sam-Uel;Chang, Ki-Chang
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.26-31
    • /
    • 2013
  • Use of heat from seawater could be different from the weather conditions of a coastal city and seawater temperatures near the city. It will be a good option to use surface layer water with Heat Pump system for using seawater cooling/heating in Jeju. The study investigates the proper depth for seawater heat gain of Jeju area in Korea. Sampling points are 0, 10, 20, 30m from the surface of the Sea. Seawater temperature does not change significantly according to the depth in winter, while the temperature is quite different according to the depth in summer. In this study, it is analyzed to compare existing system and seawater heat source system for target buildings on Jeju. And this systems are calculated a initial cost.