• Title/Summary/Keyword: Heating cooling load

Search Result 386, Processing Time 0.024 seconds

Long-term thermal performance of evacuated tubular solar collector for demonstration system (태양열 실증시스템의 진공관형 태양열 집열기 장기 열성능)

  • Lee, Ho;Joo, Hong-Jin;Yoon, Eung-Sang;Kim, Sang-Jin;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.104-110
    • /
    • 2008
  • This paper presents demonstration study results derived through field testing of a part load solar energized cooling system for the library of a cultural center building located in Gwangju, Korea. First operating demonstration system was set up in Gwangju in 2005. These system comprises the $200m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank. In a 2006, daily average of insolation showed about $506W/m^2$, the solar collector efficiency was 44%. In a 2007, daily average of insolation showed about$507W/m^2$, the solar collector efficiency was 42%. As a result, evacuated tubular solar collector kept the high efficiency for two years.

  • PDF

Development of the Welded Bellows for KSTAR Vacuum Vessel (KSTAR 진공용기용 용접 Bellows 개발)

  • Her, N.I.;Kim, B.C.;Kim, G.H.;Hong, G.H.;Sa, J.W.;Kim, H.K.;Kim, K.M.;Bak, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1098-1102
    • /
    • 2003
  • Vacuum vessel of the KSTAR(Korea Superconducting Tokamak Advanced Research) tokamak is a fully welded structure with D-shaped cross-section. According to the requirements of the physics design, sixteen horizontal ports, sixteen slanted ports, sixteen baking and cooling ports, and twenty-four top and bottom vertical ports are designed for the diagnostics, plasma heating, vacuum pumping, and baking and cooling. Bellows on these ports are used for flexible components to absorb the relative displacement due to the vacuum vessel thermal expansion and the electromagnetic force between the vacuum vessel and the cryostat ports. Fatigue strength evaluation was performed to decide the dimension of the bellows. In order to assure the quality of the bellows, a prototype bellows for the neutral beam injection port has been fabricated and tested prior to main fabrication. It was conformed that the prototype bellows has sufficient fatigue strength and vacuum reliability in the expected load conditions.

  • PDF

Comparison of the PMV and $CO_2$ Concentration, Energy Consumption Characteristics of Central Air-Conditioning System and System Air-Conditioner with Ventilation System for Large Space (중형공간에서 중앙공조방식과 시스템에어컨 방식에 따른 PMV와 $CO_2$농도, 에너지소비량 비교)

  • Sung, Sang-Chul;Noh, Kwang-Chul;Chin, Sim-Won;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.298-303
    • /
    • 2008
  • PMV, $CO_2$ and the energy consumption performance were numerically investigated in a large space with air-conditioning systems of four type. The numerical results showed that thermal comforts in the occupied zone are nearly similar in three systems except 3-way wall type system air-conditioner with ventilation system installed 2.2m height from the bottom. In case of 3-way wall type system air-conditioner the energy consumption for cooling loads was reduced about 25.5% compared to other air-conditioning systems. From the viewpoint of IAQ, it was turned out that system air-conditioner with ventilation system became worse about 20% compared to central air-conditioning systems for cooling load. The PMV, $CO_2$ concentration and energy consumption of all systems for heating loads were similar in a large space considered.

  • PDF

Performance Analysis of Cooling Tower-Assisted Hybrid Ground-Coupled Heat Pump (HGCHP) System (냉각탑 병용 하이브리드 지열 히트펌프 시스템의 성능 분석)

  • Sohn, Byonghu;Lee, Doo-Young;Choi, Jae-Ho;Min, Kyong-Chon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • This paper presents the measurement and analysis results for the performance of HGCHP system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from February 1, 2014 to February 28, 2015. Leaving load temperatures to building showed an average value of $11.7^{\circ}C$ for cooling and $39.5^{\circ}C$ for heating, respectively. From the analysis, the daily PF of hybrid GCHP system varied from 2.6 to 6.6 over the measurement period.

Energy Performance Evaluation of Zero Energy Technologies for Zero Energy Multi-House (공동주택의 에너지 자립을 위한 핵심요소기술의 에너지 성능평가)

  • Yoon, Jong-Ho;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.161-167
    • /
    • 2007
  • Zero Energy Multi-House(ZeMH) signifies a residential building which can be self sufficient with just new and renewable energy resources without the aid of any existing fossil fuel. For success of ZeMH, various innovative energy technologies Including passive and active systems should be well integrated with a systematic design approach. The first step for ZeMH is definitely to minimize the conventional heating and cooling loads over 50% with major energy conservation measure and passive solar features which are mainly related to building design components such as super-insulation, super window, including infiltration and ventilation issues. The purpose of this study is to analyze the thermal effect of various building design components in the early design of ZeMH. The process of the study is presented in the following. 1) selection reference model for simulation 2) verification of reference model with computer simulation program(ESP-r 9.0). 3) analysis of effect according to insulation-thickness, kinds of windows, rate of infiltration. and The simulation results indicate that almost 50% savings of conventional heating load in multi-house can be achieved with the optimum design of building components such as super insulation, super window, infiltration, ventilation.

A Study on the High Efficiency Ground Source Heat Pump System (1) (부하추종형 고효율 지열히트펌프 시스템에 관한 연구 (1))

  • Koh, Deuk-Yong;Kim, Ook-Joong;Choi, Sang-Kyu;Chang, Ki-Chang
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.30-37
    • /
    • 2005
  • Cycle simulation of Ground Source Heat Pump[GSHP] system was carried out to determine the design specification of basic components such as turbo compressor and heat exchangers. Part load operation characteristics of the designed GSHP system was estimated using the compressor and heat exchanger performance data. A 50RT class turbo compressor for GSHP system is now under development, in which R134a refrigerant is adopted as working fluid. The compressor with variable cascade diffusers is designed to work both in cooling and heating modes so that it can actively keep up with the climate change with high efficiency. The normal running speeds of the compressor are 59000rpm for heating mode and 70000rpm for tooling mode respectively. It has two identical impellers at both ends of the rotor so as to minimize aero-induced thrust force effectively. GSHP system was coupled with a vortical type heat exchanger, and heat gain and heat loss from ground were evaluated per a bore hole. For the optimal integration of the heat pump system, its header for circulating fluid was combined with the ground heat exchangers in parallel and series configuration.

  • PDF

Analysis of the Initial Cost Payback Period on the Open-loop Geothermal System Using Two Wells (복수정을 이용한 개방형 지열 시스템의 초기투자비 회수기간 분석)

  • Cho, Jeong-Heum;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.119-126
    • /
    • 2017
  • Recently, ground source heat pump systems are being used in buildings for cooling and heating to reduce greenhouse gas and save energy. However, ground source heat pump systems mainly use the vertical closed-loop geothermal system design rather than the open-loop geothermal system design. This is due to a lack of knowledge and few research feasibility studies. In this research, a dynamic thermal analysis numerical simulation based on a standard house model was conducted for an open-loop geothermal system. Based on heating load analysis results, the life cycle costs of a standard house using an open two-well geothermal system were analyzed and compared with a vertical closed-loop geothermal system, and a diesel boiler. As a result, it was found that using an open two-well geothermal system shows economic return on investment after three years.

Analysis of Environmental Design Data for Growing Pleurotus ervngii (큰 느타리버섯 재배사의 환경설계용 자료 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.95-105
    • /
    • 2005
  • This study was carried out to file up using effect and requirement of energy for environmental design data of Pleurotus eryngii growing houses. Heating and cooling Degree-Hour (D-H) were calculated and compared for. some Pleurotus eryngii growing houses of sandwich-panel (permanent) o. arch-roofed(simple) type structures modified and suggested through field survey and analysis. Also thermal resistance (R-value) was calculated for the heat insulating and covering materials of the permanent and simple-type, which were made of polyurethane or polystyrene panel and $7\~8$ layers heat conservation cover wall. The variations of heating and cooling D-H simulated for Jinju area was nearly linearly proportional to the setting inside temperatures. The variations of cooling D-H was much more sensitive than those of heating D-H. Therefore, it was expected that the variations of required energy in accordance with setting temperature or actual temperature maintained inside of the cultivation house could be estimated and also the estimated results of heating and cooling D-H could be effectively used far the verification of environmental simulation as well as for the calculation of required energy amounts. When the cultivation floor areas are all equal, panel type houses to be constructed by various combinations of materials were found to by far more effective than simple type pipe house in the aspect of energy conservation maintenance except some additional cost invested initially. And also the energy effectiveness of multi-span house compared to single span together with the prediction of energy requirement depending on the level insulated for the wall and roof area could be estimated. Additionally, structural as well as environmental optimizations are expected to be possible by calculating periodical and/or seasonal energy requirements for those various combinations of insulation level and different climate conditions, etc.

A Study on the Variation of the Thermal Load for a House According to the Earth Sheltering Method (복토 주택의 복토 방법에 따른 열부하의 변화에 관한 연구)

  • Lee, Jae-Hyuk;Choi, Won-Ki;Suh, Seung-Jik;Cho, Dong-Woo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.166-171
    • /
    • 2008
  • We cannot imagine any more the environment and energy problems are separated from our lives. The various attempts to solve these problems are made all over the world. In this study it was performed to analyze a different heating and cooling load depending on the earth-sheltering method and kind of soils by using TRNSYS 16 as the first step to establish the design guidelines for earth-sheltered architecture, one of the eco-friendly and low energy consuming building types. After performing this simulation, we found the result like this. It is the most lowest load in case of all of walls and roof being earth-sheltered. But considering of the load reduction rate, the effect of earth-sheltering the exterior vertical wall is more efficient for load reduction than the one of earth-sheltering a roof. And we got a lower thermal load in case of a lower heat conductivity of soil. Afterwards we will conduct a further study for boundary condition at earth-sheltered surface and the simulation analysis about the sensitivity variables. The final goal of this study is preparing the design guidelines for earth-sheltered architecture. so we will contribute to building energy saving.

  • PDF

Experimental Study on Application of Multi-Stepwise TPSM (다단계 온도프리스트레싱 공법의 현장적용을 위한 실험적 연구)

  • Ahn, Jin-Hee;Kim, Jun-Hwan;Kim, Sang-Hyo;Lee, Sang-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.91-100
    • /
    • 2008
  • Multi-stepwise Thermal Prestressing Method(TPSM) is a newly proposed prestressing method, which is combined the external prestressing method and the external bonding method. Multi-stepwise thermal prestressing force is induced by cooling process of cover-plate in the multi-stepwise temperature distribution after the cover-plate being bolted to the girder. In this study, the heating capacity test of the developed heating system for applying the multi-stepwise TPSM effectively and multi-stepwise TPSM inducing test of H-beam is performed. Also, a field test of the rhamen type temporary bridge is carried out to evaluate the effect and application of the multi-stepwise TPSM. Truck load was loaded and compared with the structure analysis results.