• Title/Summary/Keyword: Heating and low temperature

Search Result 956, Processing Time 0.035 seconds

The Effect of Load Variation on the Performance of an Injection Heat Pump with an Economizer (이코너마이저 적용 열펌프 시스템의 부하변화에 따른 성능 특성 연구)

  • Choi, Jong Min;Park, Yong-Jung;Kang, Shin-Hyung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • Heat pumps have received a fair amount of attention all over the world for their high efficiency and low environmental impact. Employing heat pumps for residential heating and cooling produces only about 2038 kg-$CO_2$/year, an amount which is less than half that of conventional boiler systems. However, the use of single-stage heat pumps becomes uneconomical when they are operated at very low evaporating temperature or high condensing temperature. Two-stage heat pumps systems can be used successfully for low or high temperature applications. In this paper, the experimental study on the performance of two-stage heat pump with an economizer was executed in heating mode. When the secondary fluid inlet temperature to the indoor heat exchanger increased, the COP enhancement rate of two-stage heat pump with an economizer was increased. For all outdoor inlet temperature conditions, the performance of the heat pump with an economizer was higher than it without an economizer.

Temperature Control using Peltier Element by PWM Method

  • Pang, Du-Yeol;Jeon, Won-Suk;Choi, Kwang-Hoon;Kwon, Tae-Kyu;Kim, Nam-Gyun;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1400-1404
    • /
    • 2005
  • This paper presents the temperature control of aluminum plate by using Peltier element. Peltier effect is heat pumping phenomena by electric energy as one of the thermoelectric effect. So if current is charged to Peltier element, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier element is used to control the temperature of small aluminum plate with current control and operating cooling fan only while cooling duration. Operating cooling fan only while cooling duration is proper to get more rapid heating and cooling duration. As a result of experiment, it takes about 100sec period to repeating temperature between $35^{\circ}C$ and $70^{\circ}C$ and about 80sec from $40^{\circ}C$ to $70^{\circ}C$ in ambient air temperature $25^{\circ}C$ and while operating cooling fan only in cooling duration. Future aim is to apply this temperature control method in actuating SMHA(special metal hydride actuator) which is applicable in Siver project acting in low frequency range by using Peltier element for heating and cooling.

  • PDF

Self-activated Graphene Gas Sensors: A Mini Review

  • Kim, Taehoon;Eom, Tae Hoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.220-226
    • /
    • 2020
  • Graphene has been widely considered a promising candidate for high-quality chemical sensors, owing to its outstanding characteristics, such as sensitive gas adsorption at room temperature, high conductivity, high flexibility, and high transparency. However, the main drawback of a graphene-based gas sensor is the necessity for external heaters due to its slow response, incomplete recovery, and low selectivity at room temperature. Conventional heating devices have limitations such as large volume, thermal safety issues, and high power consumption. Moreover, metal-based heating systems cannot be applied to transparent and flexible devices. Thus, to solve this problem, a method of supplying the thermal energy necessary for gas sensing via the self-heating of graphene by utilizing its high carrier mobility has been studied. Herein, we provide a brief review of recent studies on self-activated graphene-based gas sensors. This review also describes various strategies for the self-activation of graphene sensors and the enhancement of their sensing properties.

Field Enhanced Rapid Thermal Process for Low Temperature Poly-Si TFTs Fabrications

  • Kim, Hyoung-June;Shin, Dong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.665-667
    • /
    • 2005
  • VIATRON TECHNOLOGIES has developed FE-RTP system that enables LTPS LCD and AMOLED manufacturers to produce poly-Si films at low cost, high throughput, and high yield. The system employs sequential heat treatment methods using temperature control and rapid thermal processor modules. The temperature control modules provide exceptionally uniform heating and cooling of the glass substrates to within ${\pm}2^a\;C$. The rapid thermal process that combines heating with field induction accelerates the treatment rates. The new FE-RTP system can process $730{\times}920mm$ glass substrates as thin as 0.4 mm. The uniform nature of poly-Si films produced by FE-RTP resulted in AMOLED panels with no laser-Muras. Furthermore, FE-RTP system also showed superior performances in other heat treatment processes involved in poly-Si TFT fabrications, such as dopant activation, gate oxide densification, hydrogenation, and pre-compaction.

  • PDF

The Electric Properties And Fabrication of High Temperature Heating Elements of $MoSi_2$ (이규화몰리브덴 고온발열체의 전기적 특성 및 제조에 관한 연구)

  • 이후인;심건주;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.605-608
    • /
    • 2001
  • Molybdenum disilicide is widely used for manufacturing high-temperature heating elements owing to its low electrical resistivity, good thermal conductivity, and ability to withstand oxidation at high temperatures. MoSi$_2$heating elements with 4-5wt% of montmorillonite type bentonite as plasticzer and a small amount of Si$_3$N$_4$, ThO$_2$, and B as additives was manufactured. Extruded rods of 3.7mmø and 6.7mmø diameter and 400mm long were fabricated using a vacuum extruder, which were then sinrered for 4-5 hrs. at the max. temperrature of 140$0^{\circ}C$. After 10 minute's oxidation treatment, the diameter of the rod is reduced. The heating elements thus prepared was stable at 1$700^{\circ}C$ and the physical properties such as specific electrical resistivity, hardness, apparent densisty, thermal expansion coefficient, and bending strength were almost identical with thoes of commercial heating elements. In this study we have tried to gain the practical knowledge of manufacturing MoSi$_2$heating elements so that it may be utilized later in a research of pilot scale and eventually be transferred to industry.

  • PDF

The Effect of the Heating Conditions on the Warm Hydro-Formability of the Alumium Alloys (알루미늄합금의 열간 액압성형법 성형성에 대한 가열조건의 영향도 분석)

  • Kim, Bong-Joon;Park, Kwang-Su;Ryu, Jong-Soo;Son, Sung-Man;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.172-176
    • /
    • 2005
  • Modern automobiles are built with a steadily increasing variety of materials and semifinished products. The traditional composition of steel sheet and cast iron is being replaced with other materials such as aluminum and magnesium. But low formability of these materials has prevented the application of the automotive components. The formability can be enhanced by conducting the warm hydroforming using induction heating device which can raise the temperature of the specimen very quickly. The specimen applied to the test is A6061, A7075 extruded tubes which belong to the age-hardenable aluminum alloys. But in the case of A6061 age hardening occurs at room temperature or at elevated temperatures before and after the forming process. In this study the effects of the heating condition such as heating time, preset temperature, holding time during die closing and forming time on the hydroformability are analyzed to evaluate the phenomena such as dynamic strain hardening and ageing hardening at high temperatures after the hydroforming process.

Physiological Functionalities and Anti-oxidant activity of heated radish extract

  • Kim, Hyun-Kyoung
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.38-46
    • /
    • 2018
  • This study proceeded an experiment that can increase such physiological properties of heated radish extract. During the extraction of radish, including the byproduct, an increase in antioxidant properties of radish according the heating temperature was performed. Upon the extracts of radish bark and radish green extract(mucheong), the physiological functionalities and antioxidant activity were investigated. As a result, the color of radish ethanol extract in dependence of heating temperature, showed light brown color at low heating temperature and black color from $150^{\circ}C$. The total polyphenol content significantly increased as a result of heat treatment; 6.7 times and 22 times higher than the control at $110^{\circ}C$ and $150^{\circ}C$, respectively. DPPH radical scavenging ability and antioxidant property increased with increasing heating temperature; in comparison to heat-treated radish at $110^{\circ}C$ and $150^{\circ}C$, $IC_{50}$ decreased by 1/22 times. $IC_{50}$ of the control was 23times higher than $150^{\circ}C$ heat treated radish (Control $IC_{50}$:130.305). According to the graph that represents ABTS activity, antioxidant activity increased in dependence of heat treatment likewise to the total polyphenol content and DDPH radical scavenging activity. Upon heat treatment at $150^{\circ}C$, antioxidant activity in consequence of ABTS assay increased 23 times higher than the control.

The Effect of Heat Curing Methods on the Protection against Frost Damage at Early Age of the Concrete Under Extremely Cold Climate

  • Jung, Eun-Bong;Shin, Hyun-Sup;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.513-521
    • /
    • 2013
  • This study aimed to examine whether heat curing methods of concrete subjected to $-10^{\circ}C$ could be effective by varying the combination of heating cable and surface heat insulations. Three different concrete specimens incorporating 30% fly ash with 50% W/B were fabricated to simulate wall, column and slab members with dimensions of $1600{\times}800{\times}200$ mm for slab, $800{\times}600{\times}200$ mm for wall and $800{\times}800{\times}800$ mm for column. For heat curing combinations, Type-1 specimens applied PE film for slab, plywood for wall and column curing. Type-2 specimens applied double layer bubble sheet (2LB) and heating coil for slab, and 50 mm styrofoam for wall and column curing. Type-3 specimen applied 2LB for slab, electrical heating mat for wall and column inside heating enclosure. The test results revealed that the temperature of Type 1 specimen dropped below $0^{\circ}C$ beginning at 48 hours after placement due to its poor heat insulating capability. Type 2 and 3 specimens maintained a temperature of around $5{\sim}10^{\circ}C$ after placement due to favorable heat insulating and thermal resistance.

Characteristics of the Water Soluble Browning Reaction of Korean Red Ginseng as Affected by Heating Treatment (열처리에 따른 고려홍삼의 수용성 갈변물질의 특성)

  • 이종원;이성계
    • Journal of Ginseng Research
    • /
    • v.22 no.3
    • /
    • pp.193-199
    • /
    • 1998
  • The purpose of this study was to Investigate characteristics of the water soluble browning reaction products (WS-BRPs) from Korean red ginseng by heat treatment. Absorbance of WS- BRPs was increased with increases of heating temperature and time, but pH value were decreased In Muter color value L and b value were decreased, while a value was increased. and absorbance at 280 nm in spectrum of the WS-BRPs was increased according to the increase of heating temperature. When the WS-BRPs were applied on Bio-Gel P-30 column after heating and pH treatment, two majors browning products increased according to the progress on time. And pH 3.0 increased in quantity of high molecular fractions and pH 8.0 increased in quantity of low molecular fractions.

  • PDF

A method for Thermal Control of Nano Injection Molding using the Peltier Devices (펠티어 소자를 이용한 나노 사출 금형의 능동형 온도 제어)

  • Shin, H.;Kwon, J.;Hong, N.;Seo, Y.;Kim, B.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.337-342
    • /
    • 2008
  • The injection molding process has high accuracy and good reproducibility that are essential for mass production at low cost. Conventional molding processes typically use the water-based mold heating and air cooling methods. However, in the nano injection molding processes, this semi-active mold temperature control results in the several defects such as air-flow mark, non-fill, sticking and tearing, etc. In order to actively control temperature of the molds and effectively improve the quality of the molded products, the novel nano injection molding system, which uses active heating and cooling method, has been introduced. By using the Peltier devices, the temperature of locally adiabatic molds can be controlled dramatically and the quality of the molded patterns can be improved.