• Title/Summary/Keyword: Heating and Cooling

Search Result 713, Processing Time 0.091 seconds

Intermittent Heating and Cooling Load Calculation Method -Comparing with ISO 13790

  • Lee, Sang-Hoon
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • College of Architecture, Georgia Institute of Technology, Atlanta, GA, US Abstract The intermittent heating and cooling energy need calculation of the ISO 13790 monthly method was examined. The current ISO 13790 method applies a reduction factor to the continuous heating and cooling need calculation result to derive the intermittent heating and cooling for each month. This paper proposes a method for the intermittent energy need calculation based on the internal mean temperature calculation. The internal temperature calculation procedure was introduced considering the heat-balance taking into account of heat gain, heat loss, and thermal inertia for reduced heating and cooling period. Then, the calculated internal mean temperature was used for the intermittent heating and cooling energy need calculation. The calculation results from the proposed method were compared to the current ISO 13790 method and validated with a dynamic simulation using EnergyPlus. The study indicates that the intermittent heating and cooling energy need calculation method using the proposed model improves transparency of the current ISO 13790 method and draws more rational outcomes in the monthly heating and cooling energy need calculation.

Effects of Vertical Meteorological Changes on Heating and Cooling Loads of Super Tall Buildings

  • Song, Doosam;Kim, Yang Su
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.81-85
    • /
    • 2012
  • Vertical meteorological conditions encountered by super tall buildings, such as wind speed, temperature and humidity, vary due to their height. Therefore, it is necessary to consider these environmental changes to properly estimate the heating and cooling loads, and to minimize the energy demands for HVAC in super tall buildings. This paper aims to analyze how vertical meteorological changes affect heating and cooling loads of super tall buildings by using numerical simulation. A radiosonde, which observes atmospheric parameters of upper air such as wind speed, wind direction, temperature, relative humidity and pressure, was used to provide weather data for the building load simulation. A hypothetical super tall building was used for the simulation to provide quantified characteristics of the heating and cooling loads, comparing the lower, middle and upper parts of the building. The effect of weather data on the heating and cooling loads in super tall building was also discussed.

An Analysis on Building Shading Plan for a City Hall considering Energy Saving

  • Kim, Jin Lee;No, Sang Tae
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: Recently, many public office buildings which were built by curtain wall increased rapidly, but the results of the investigation of the government, these buildings have been found that the heating and cooling thermal load is high, and showed low energy efficiency. Method: To evaluate the effects by applying outdoor louver and indoor blind, which can control solar radiation in order to reduce the heating and cooling load of public office building which was built by glass curtain wall. The heating and cooling load was calculated via Energyplus, building and outdoor louver, indoor blind were modeled by Google sketchup connected to Energyplus. Result: The results of this study were as follows; the case of applying various outdoor louver, the heating and cooling load all decreased as compared to the case without applying outdoor louver, the case of applying indoor blind, the heating and cooling load decreased as compared to the case without applying indoor blind, but indoor blind showed low energy performance comparing outdoor louver.

A Study on the Optimization of Heating and Cooling System in University Campus (대학 캠퍼스 냉·난방시스템 최적화 방안 연구)

  • Park, So-Yeon;Park, Hyo-Soon;Lee, Sang-Hyeok;Kim, Ji-Yeon;Hong, Sung-Hee
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.139-144
    • /
    • 2010
  • The demands are increasing for the efficient heating and cooling system and thermal comfort environment because of changes in climate and environment, and deterioration of buildings and facilities can cause education budget to increase. So the study to apply heating and cooling system to university is urgently needed to improve an optimum energy saving system, educational environment and convenience of maintenance. For this reason, we selected a university campus in Seoul then came to understand the current situation and found some problems. We drew alternatives from comparative analysis of them. It selects representative building and carries out economic analysis to evaluate characteristics of energy consumption and economics on each type of heating and cooling system. As a result we drew the optimum system from those processes as previously stated. We studied 3 available systems, absorption chiller, EHP(Electric Heat Pump) and GHP(Gas Engine Heat Pump). According to LCC analysis suppose that the value of EHP is 1, it came out that the value of absorption chiller is 1.5 and the value of GHP is 2.2. This study, suggesting the optimum heating and cooling system, will support educational and research activities furthermore effect to maximize energy efficiency. Ultimately it is expected that it will contribute to make eco-friendly Green Campus.

Cooling Performance Analysis of Solar Heating and Cooling System in an Office Building (사무소 건물 적용 태양열냉난방시스템의 냉방성능 분석)

  • Jang, Jae-Su;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.217-222
    • /
    • 2011
  • This study examined the cooling performance of a solar heating and cooling system for an office building using the dynamic simulation program (TRNSYS). This solar heating and cooling system incorporates evacuated tube solar collectors of $204m^2$, storage tank of $8m^3$, 116.2kW auxiliary heater, single-effect $LiBr/H_2O$ absorption chiller of 20RT nominal cooling capacity. It was found that for the representing day showed peak cooling load the annual average collection efficiency of the collector was 32.9% and coefficient of performance of single-effect $LiBr/H_2O$ absorption chiller was 0.68. And the results shows for the cooling season the solar fraction of the solar heating and cooling system was 32.2% and maximal and minimal solar fraction was 63.4% for May 17.9% for July respectively.

  • PDF

TRNSYS Dynamic Simulation for Solar Heating and Cooling Load Estimations (태양열 냉난방 부하산정을 위한 TRNSYS 동적 시뮬레이션)

  • Choi, Chang-Yong;Ko, Sang-Cheol;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • This paper presents the heating and cooling load estimations for the library of a cultural center building located in Gwangju Korea by TRNSYS with Type 56 of multi-zone building components. In this study, energy rate control mode is selected and the design temperatures for heating and cooling are specified respectively as 20oC and 26oC. Reading rooms of the library are located on the third floor of the cultural center building, and this third floor space is modeled as the five thermal zones for the TRNSYS simulation. Among the five zones, attention is given to the two zones which are the reading rooms 1 and 2. Since these two zones are to be heated and cooled by the solar thermal system which is planned to be installed in the building, dynamic thermal behaviors of the two zones are analyzed by the heating and cooling load estimations.

Economic Analysis of Heat Pump System in Educational Building -Focused on the High School of Twenty Four Classes- (교육용 건축물의 히트펌프 냉난방시스템에 대한 경제성 분석 -24학급 규모의 고등학교를 중심으로-)

  • Park, Ryul;Park, Min-Yong;Kim, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.879-887
    • /
    • 2003
  • Buildings with heating and cooling systems have been increased, since the requirement of thermal comfort for residents is grown. Heating and cooling systems, have been changed from two separate systems to one multi-function system which includes both heating and cooling. Especially, heat pump heating and cooling system has been adopted for general classrooms in schools since education environment improvement project has been launched. This research suggests the best option for the heat pump heating and cooling system in educational buildings through economic assessments for four alternative systems based on electric heat pump (EHP) and gas engine driven heat pump (GHP), which are most widely used for elementary, middle and high schools. The model buildings are in the Y high school which has 24 classes of new construction building, which will be built soon. Annual energy consumption for alternative systems uses BECS 3.10, which can be used for system simulation.

Heating and Cooling Load of Building according to Atrium Layout

  • Jeong, Nam-Young;Lee, Ji-Young;Chae, Young Tae
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Purpose: The purpose of this study is to present basic data which would be applied on the early stage of the architectural design. And that determines the introduction of the atrium by comparing and analysing the environmental performance of atrium building. Method: The building forms are classified into low storied building, middle storied building and high storied building. This study compares and analyses energy performance of the standard building without atrium and the atrium building which has one-side, two-side, three-side, four-side, and linear atrium by measuring of annual heating and cooling load with EnergyPlus. Result: As a result of the analysis of the relative annual heating and cooling load by building type, it is shown that the fluctuation of cooling load in low storied building is large because heat storage in atrium affects building, and the fluctuation of heating load in high storied building is large owing to the effect of external wall area of atrium which makes heat loss. Especially, it indicated the largest annual heating and cooling load in four-side atrium of low storied building, and in one-side atrium of high storied building.

Improvement of Design Criteria in Heating and Cooling Equipment According to the Consolidation of Design Standard for Energy Saving in Apartment Buildings of Korea (국내 공동주택의 에너지절약 설계기준 강화에 따른 냉난방설비 설계 기준 개선 방안)

  • Lim, Jae-Han;Kim, Sung-Im;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.89-97
    • /
    • 2014
  • Recently design standard for energy-saving in apartment buildings has been consolidated gradually on the basis of evaluation and certification standards of energy efficiency of buildings, the energy-saving policy of building at home and abroad. Performance criteria for thennal insulation as well as fenestration has been progressively enhanced, and performance criteria for ventilation and airtightness of the building have also been re-developed. Therefore, heating and cooling load characteristics of the apartment building can be changed. For the design of the upcoming heating and cooling equipment in apartment buildings, it is necessary to evaluate the heating and cooling load characteristics according to the design strategies for energy saving in apartment buildings. As a result, in this study, it is intended to use as a resource for analyzing the impact that the adoption of energy-saving design variables for each of the apartment buildings, to predict the heating and cooling load characteristics in the apartment building.

A Second-Law Analysis of the Energy Consumption in Heating and Cooling Systems (냉난방에 소비되는 에너지절약에 관한 열역학 연구)

  • Bae, Sun-Hun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.3 no.3
    • /
    • pp.180-184
    • /
    • 1974
  • From the point of view of the second law of thermodynamics, house heating and cooling systems were analysed for saving energy. The analysis provides a theoretical basis for the heat-pump application. Also the efficiency of energy use is defined more rigorously by comparing the thermodynamic availability actually consumed in heating and cooling with the minimum thermodynamic availability required to do the same heating and cooling. It was found that the present 'Ondol' heating system has a heating efficiency of around $8\%$ according to the definition described here. Several schemes to inprove the efficiency are presented.

  • PDF