• Title/Summary/Keyword: Heating Wire

Search Result 161, Processing Time 0.029 seconds

Concepts for Domain Wall Motion in Nanoscale Ferromagnetic Elements due to Spin Torque and in Particular Oersted Fields

  • Klaui, Mathias;Ilgaz, Dennis;Heyne, Lutz;Kim, June-Seo;Boulle, Olivier;Schieback, Christine;Zinser, Fabian;Krzyk, Stephen;Fonin, Mikhail;Rudiger, Ulrich;Backes, Dirk;Heyderman, Laura J.;Mentes, T.O.;Locatelli, A.
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.53-61
    • /
    • 2009
  • Herein, different concepts for domain wall propagation based on currents and fields that could potentially be used in magnetic data storage devices based on domains and domain walls are reviewed. By direct imaging, we show that vortex and transverse walls can be displaced using currents due to the spin transfer torque effect. For the case of field-induced wall motion, particular attention is paid to the influence of localized fields and local heating on the depinning and propagation of domain walls. Using an Au nanowire adjacent to a permalloy structure with a domain wall, the depinning field of the wall, when current pulses are injected into the Au nanowire, was studied. The current pulse drastically modified the depinning field, which depended on the interplay between the externally applied field direction and polarity of the current, leading subsequently to an Oersted field and heating of the permalloy at the interface with the Au wire. Placing the domain wall at various distances from the Au wire and studying different wall propagation directions, the range of Joule heating and Oersted field was determined; both effects could be separated. Approaches beyond conventional field- and current-induced wall displacement are briefly discussed.

The Effect of Soil Warming on the Greenhouse Heating Load (지중가온이 온실의 난방부하에 미치는 영향)

  • Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

Application of A High Voltage Capacitor Charger to Nanosize Powder Production

  • Jeong I.W.;Rim G.H.;Jung Y.H.;Kim K.S.;Lee H.S.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.727-730
    • /
    • 2001
  • Electrical wire explosion (EWE) is characterized by great current density and rapid metal heating, which make itself an ideal tool for nano-materials manufacturing technology. The EWE requires a high voltage electric-energy source. In the current experimental set-up a high voltage capacitor is used for the purpose. Hence, a power supply that is capable of charging the capacitor to a target voltage is required. One of the special requirements is the precise controllability of the stored energy level in the capacitor. Through this study a high voltage capacitor charger using a series resonant converter technology has been developed for the production of nanosize powder. A load capacitor of $32{\mu}F$ can be charged up to 20kV by the developed capacitor charger and discharged through a gap switch and a copper wire.

  • PDF

Transient Heat Transfer from a Suddenly Heated Verical Thin Wire (수직열선 근처의 과도 열전달 에 관한 실험적 연구)

  • 최만수;유정열;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.461-468
    • /
    • 1983
  • The series of experiments have been performed to study the transient heat transfer in air from a suddenly heated vertical thin wire. A platinum wire has been used as a resistance thermometer as well as a heating element to eliminate the disturbances in the measurements. The measured temperature as a function of time is compared with the calculated transient temperature with the aid of a pure conduction equation. The overshoot phenomena in terms of the Nusselt numbers have been detected and it is reasonable to define the delay time at which the onset of convection heat transfer occurs. The measured data are compared with the existing steady-state data and the agreements are reasonable within the comparable ranges.

Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

  • Lee, Hee-Keun;Chun, Kwang-San;Park, Sang-Hyeon;Kang, Chung-Yun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.770-783
    • /
    • 2015
  • Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (IV) -On the Cylinder Wake with Various Heating Rates- (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (4) -가열량의 변화에 따른 원주후류에 대하여-)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1340-1350
    • /
    • 1995
  • The effects of thermal stratification on the flow past a heated circular cylinder with various heating rates were examined in a wind tunnel. Turbulent intensities, r.m.s.values of temperature and turbulent convective heat flux distributions in the cylinder wakes with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. The phase averaging method was also used to estimate coherent contributions to the turbulent flow field in the near wake. The results show that the scalar mixing process is very different according to the mean temperature fields especially in the upper part of the wake. The coherent structure of the temperature field makes a large contribution to the time mean value like velocity components. However, the coherency of the temperature fluctuation is very different with the change of mean temperature fields, though the velocity coherent motions are quite similar in all experimental conditions.

Development of thin-film liquid-level sensors using AC heating method (교류 가열법을 이용한 박막 액체 레벨 센서 개발)

  • Hong, Jong-Gan;Choi, Sun-Rock;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1842-1846
    • /
    • 2008
  • This work reports development of novel liquid-level sensors based on the $3{\omega}$ method. The sensors determine the liquid level by measuring the thermal response as in the conventional hot-wire technique. However the sensors employ an AC heating method to enhance the sensitivity, noise resistance and time response. Also, the microfabricated thin-film structure of the sensor provides mass-producibility as well as improved sensor performance owing to the increase in the surface-volume ratio of the sensor. Two different types of the sensor are developed: one for point detection of the fluid phase and the other for monitoring continuous variation of liquid level. Notable is that the performance of the sensor is not considerably affected by the liquid flow.

  • PDF

Straightening of the micro wires (극세선의 직선화 처리에 관한 연구)

  • Kim W. K.;Kim B. H.;Kim H. Y.;Kim N. S.;Shin H. K.;Hong N. P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.83-88
    • /
    • 2004
  • Micro wires manufactured by the straightening progress are widely used in bio-medical and semi-conductor fields. In this study, we have developed a novel straightener which uses the direct heating method for straightening. In order to avoid the surface oxidization, during the heating process, we supplied the inert gas(Ar) and examined the effect of the gas flow rate. The effect of the tension and the current applied to the tungsten micro wires were thoroughly studied. From various experiments, it was found that when the tension is $500{\sim}600gf$ and the current is about 1.5A, we obtained higher straightness(${\approx}1{\mu}m/1000{\mu}m$) and roundness ($<{\pm}2{\mu}m/100{\mu}m$).

  • PDF

Suggestion of Functional Smart Jacket Based on Wearable Technology (웨어러블 테크놀로지에 기반을 둔 고기능 스마트 재킷 설계 제안)

  • Lee, Jeong-Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.3
    • /
    • pp.292-303
    • /
    • 2011
  • This research suggested a draft proposal for a smart jacket design, which has applied wearable technologies to provide convenience in daily life. The smart jacket combined with a vest was the casual item for autumn and winter. The heating device was composed of the heating element, battery, controller, electric wire, connector, switch, and charger. A stable electronic conductor fiber of good heating effect with a flexible zigzag form has been selected for the heating element. The lighting device has been made in a way that attaches the LED and its power controller in the same mechanical device. As the result of the wearing test, the heating effect turned out to be effective in the order of: back, both the back and abdomen and only the abdomen. When wearing a smart jacket, the back and abdomen have been selected as favorable body parts for heating. Pockets and hems are selected as the adequate place to attach the LED lighting, and the brightness of LED lighting has turned out to be suitable and useful. Based on the test results, the first draft proposal has attached the heating element only in the back and its controller located in the inside pocket of the vest. In addition, the LED has been attached to the front pocket of the jacket. As to the second draft proposal, heating elements have been placed in the back and the abdomen. Each controller for the heating elements has been placed in the front and inside pocket of vest, and the LED lighting has been attached to the hem of the jacket. The smart jacket combined with a wearable device was assessed by functioning categories. The user showed a high satisfaction in the heating and illuminating function of a smart jacket.

Comparison of transition temperature range and phase transformation behavior of nickel-titanium wires (니켈-타이타늄 호선의 상전이 온도 범위와 상전이 행동 비교)

  • Lee, Yu-Hyun;Lim, Bum-Soon;Lee, Yong-Keun;Kim, Cheol-We;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.40 no.1
    • /
    • pp.40-49
    • /
    • 2010
  • Objective: The aim of this research was to evaluate the mechanical properties (MP) and degree of the phase transformation (PT) of martensitic (M-NiTi), austenitic (A-NiTi) and thermodynamic nickel-titanium wire (T-NiTi). Methods: The samples consisted of $0.016\;{\times}\;0.022$ inch M-NiTi (Nitinol Classic, NC), A-NiTi (Optimalloy, OPTI) and T-NiTi (Neo-Sentalloy, NEO). Differential scanning calorimetry (DSC), three-point bending test, X-ray diffraction (XRD), and microstructure examination were used. Statistical evaluation was undertaken using ANOVA test. Results: In DSC analysis, OPTI and NEO showed two peaks in the heating curves and one peak in the cooling curves. However, NC revealed one single broad and weak peak in the heating and cooling curves. Austenite finishing ($A_f$) temperatures were $19.7^{\circ}C$ for OPTI, $24.6^{\circ}C$ for NEO and $52.4^{\circ}C$ for NC. In the three-point bending test, residual deflection was observed for NC, OPTI and NEO. The load ranges of NC and OPTI were broader and higher than NEO. XRD and microstructure analyses showed that OPTI and NEO had a mixture of martensite and austenite at temperatures below Martensite finishing ($M_f$). NEO and OPTI showed improved MP and PT behavior than NC. Conclusions: The mechanical and thermal behaviors of NiTi wire cannot be completely explained by the expected degree of PT because of complicated martensite variants and independent PT induced by heat and stress.