• Title/Summary/Keyword: Heating Unit

Search Result 497, Processing Time 0.03 seconds

The Study of Thermal Performance on Solar Window (다기능 솔라윈도우의 열성능 연구)

  • Cho, YilSik;Kim, Janghoi;Yang, Yoonsub;Kim, ByoungSoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in Heating/cooling performance analysis. The reference model of simulation was made up to analysis Heating/cooling performance on Solar Window. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

  • PDF

An Experimental Study on the Heating Performance Characteristics of a Vapor Injection Heat Pump for Electric Vehicles (가스 인젝션을 적용한 전기자동차용 히트펌프의 난방성능 특성에 대한 실험적 연구)

  • Kim, Dongwoo;Jung, Jongho;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.308-314
    • /
    • 2014
  • A heat pump has been considered as a thermal management unit for electric vehicles, including the heating and cooling of the cabin. However, the heat pump shows performance degradation at low outdoor temperatures or high compressor speeds. In this study, a R-134a heat pump for an electric vehicle was designed to improve system efficiency, by applying vapor injection with an internal heat exchanger. The heating performance characteristics of the vapor injection heat pump were analyzed at various compressor speeds and outdoor temperatures. The vapor injection heat pump showed 13.3% COP improvement over the non-injection heat pump, when the heating capacity was fixed at 5.2 kW. In addition, the heating capacity of the vapor injection system increased by 9.6%, as compared to the non-injection system.

Air Intake Door Control for the High Air Conditioning Performance (인테이크 도어 제어를 이용한 고성능 냉난방 시스템)

  • Park, Dongkyou;Kim, Yongchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.17-22
    • /
    • 2014
  • Recently, the quick heating performance is an important issue in the car because engine power becomes so high. So car makers have been adapted the additional heating devices as like PTC(Positive Temperature Coefficient) heater. And the quick cooling performance is also important issue because its result is used in the IQS(Initial Quality Study). In this paper, control of the HVAC(Heating, Ventilation and Air Conditioning) intake door has been studied for the quick heating and cooling performance. Heating performance is improved $4.0^{\circ}C$ at $-20^{\circ}C$ ambient temperature after 20 minutes. And cooling performance is improved $1.5^{\circ}C$ at $35^{\circ}C$ ambient temperature after 10 minutes. In addition, intake door control system brings on the cost reduction because the flab door can be eliminated. This intake door control system has been adapted to the new developing cars.

Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System (중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석)

  • Kim, Kyu-Saeng;Lee, Sang-Hyeok;Hong, Kyung-Pyo;Won, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

An Experimental Study on the Evaluation of Concrete Unit-Water Content Using High Frequency Moisture Sensor (FDR) (고주파수분센서(FDR)를 활용한 콘크리트 단위수량 평가에 관한 실험적 연구)

  • Lee, Seung-Yeop;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.59-60
    • /
    • 2021
  • The unit-water content has a major problem in concrete structures which leads to micro cracks on the concrete during drying time. Thus, the compressive strength and durability of the concrete structures are significantly reduced. Several techniques have been developed to measure the unit-water content in concrete structures such as heating drying, unit volume mass, and capacitance measurements. However, these techniques have problems in during measurement such as longer time, expensive and difficult in analysis of data. Frequency Domain Reflectivity (FDR) is one of the sensors which used to measure the water content. This method has several advantages including easy to measure, inexpensive, and capable of measuring moisture in real time. In this study, an attempt has been made to evaluate the unit-water content in concrete using the FDR sensor and interpret the data with deep learning method.

  • PDF

Estimation of Power Generation Capacity from Agricultural Biomass (농업부산물 부존량 조사 및 발전 가능량의 추정)

  • Hong, Seong-Gu
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.595-598
    • /
    • 2003
  • Elemental data was collected for agricultural biomass such as pruned branches with respect to unit area production and heating values. The results indicated that higher heating values for the biomass was comparable to those of woody biomass. Approximate estimations of power generation from biomass showed that over 100kW power plants could be installed in some districts.

  • PDF

Electric furnace development for back lights (백라이트를 위한 전기로 개발에 관한 연구)

  • Kim, Soo-Yong;Lee, Oh-Keol;Kim, Sang-Hyo
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.94-96
    • /
    • 2001
  • As a batch Type device, this machine is contrive to seal glass plates for plasma BLU (Back Light Unit) by indirect heating from electric heaters. In order to maintain the heating / cooling Chambers clean, this machine uses a muffle formation. The components of the machine are listed bellow.

  • PDF

LS-SVM Based Modeling of Winter Time Apartment Hot Water Supply Load in District Heating System (지역난방 동절기 공동주택 온수급탕부하의 LS-SVM 기반 모델링)

  • Park, Young Chil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.355-360
    • /
    • 2016
  • Continuing to the modeling of heating load, this paper, as the second part of consecutive works, presents LS-SVM (least square support vector machine) based model of winter time apartment hot water supply load in a district heating system, so as to be used in prediction of heating energy usage. Similar, but more severely, to heating load, hot water supply load varies in highly nonlinear manner. Such nonlinearity makes analytical model of it hardly exist in the literatures. LS-SVM is known as a good modeling tool for the system, especially for the nonlinear system depended by many independent factors. We collect 26,208 data of hot water supply load over a 13-week period in winter time, from 12 heat exchangers in seven different apartments. Then part of the collected data were used to construct LS-SVM based model and the rest of those were used to test the formed model accuracy. In modeling, we first constructed the model of district heating system's hot water supply load, using the unit heating area's hot water supply load of seven apartments. Such model will be used to estimate the total hot water supply load of which the district heating system needs to provide. Then the individual apartment hot water supply load model is also formed, which can be used to predict and to control the energy consumption of the individual apartment. The results obtained show that the total hot water supply load, which will be provided by the district heating system in winter time, can be predicted within 10% in MAPE (mean absolute percentage error). Also the individual apartment models can predict the individual apartment energy consumption for hot water supply load within 10% ~ 20% in MAPE.

Development of a Conversion Unit converting the existing air conditioner to Heat Pump System for the Emergency Shelter (재해임시주거 냉난방을 위하여 기존 에어컨을 열펌프로 전환하는 변환기 개발)

  • Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.77-84
    • /
    • 2011
  • Korea and some other countries located in the northern hemisphere employ the air conditioner for the space cooling in the hot summer season and also some kinds of heaters for the space heating in the cold winter season. Especially in Korea, a great number of air conditioners of about 12,700,000 sets have been used these days. However, they are used for a short operation period of only 58 days a year, which results in the material and economic losses. To solve this problem and employ this system for the emergency shelter, a new conversion unit which could convert the existing air conditioner to a heat pump system for simultaneous heating and cooling was developed in this study, and the thermal performance was tested. The results indicated that the indoor air could be heated from $27^{\circ}C$ to $39^{\circ}C$ by the air conditioner converted to a heat pump system with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, and cooled from $20^{\circ}C$ to $15^{\circ}C$ by the converted system with the ambient temperature variation of $20^{\circ}C{\sim}35^{\circ}C$. And also the heating COP increased from 3.3 to 5.3 in case of the heat exchange of the super cooling(HESC) circuit and from 3.0 to 4.0 in case of the By-pass with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, respectively, whereas the cooling COP decreased from 3.1 to 2.1with the increase of the ambient temperature from $20^{\circ}C$ to $35^{\circ}C$.

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열교환 성능 분석(농업시설))

  • 서원명;강종국;윤용철;김정섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.333-339
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas funnel connected to combustion chamber of greenhouse heating system. The experiment heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas funnel, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amount by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air pipes and exhaust air passages crossing the pipes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through funnels.

  • PDF