• Title/Summary/Keyword: Heating Plate

Search Result 481, Processing Time 0.023 seconds

A Study on Performance of Seasonal Borehole Thermal Energy Storage System Using TRNSYS (TRNSYS를 이용한 Borehole 방식 태양열 계간축열 시스템의 성능에 관한 연구)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.37-47
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a glass greenhouse was analyzed numerically. For this study, the gardening 16th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And, the heating load of the glass greenhouse selected was 576 GJ. BTES (Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modeling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump, controller. As a result of the analysis, the energy of 928 GJ from the flat plate solar collector was stored into BTES system and 393 GJ of energy from BTES system was extracted during heating period, so that it was confirmed that the thermal efficiency of BTES system was 42% in 5th year. Also since the heat supplied from the auxiliary boiler was 87 GJ in 5th year, the total annual heating demand was confirmed to be mostly satisfied by the proposed system.

Characterization of LaCrO$_3$ Powders Synthesized by Combustion Process with Different Heating Methods (가열방법에 따른 LaCrO$_3$ 연소합성분말의 특성)

  • 정층환;박홍규;오석진;박지연
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1078-1084
    • /
    • 1998
  • lanthanum chromite(LaCrO3) powder was synthesized by the combustion of a solution of metal nitrates La(NO3).6H2O and Cr(NO3)3.9H2O and urea. The pH of solution affected a yield of the combustion products but did not influence the morphology of the products. When the pH of the solution was in the range of 0.7-4, the yield of the combustion products was more than 90% The morphology of the combustion products was af-fected by heating methods for the solution. The hot-plate induced heating of the solution yielded powders hav-ing two-dimensionally interconnected agglomerates whereas microwave-induced heating produced a fine and non-agglomerated powders. The specific surface area(BET) of the combustion products using microwave-in-non-agglomerated powders. The specific surface area(BET) of the combustion products using microwave-in-duced heating method were larger(25~32m2/g) than that of hot plate heating method(10-14m2/g)

  • PDF

Experimental Study on Transient Heating of the Glass Panel in the Infrared Heating Chamber

  • Lee, Kong-Hoon;Kim, Ook-Joong;Ha, Su-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.499-502
    • /
    • 2004
  • The temperature distribution of a glass plate heated in the infrared heating chamber has been investigated. Temperature of the glass panel is measured using a set of thermocouples and the optical pyrometer. Temperatures measured by thermocouples have good agreement with those by the pyrometer. The temperature uniformity of the panel is improved with wall reflectivity, which is one of the important factors to uniformly heat the panel

  • PDF

Development of a Control System for Automated Line Heating Process by an Object-Oriented Approach

  • Shin, Jong-Gye;Ryu, Cheol-Ho;Choe, Sung-Won
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.4
    • /
    • pp.1-12
    • /
    • 2002
  • A control system for an automated line heating process is developed by use of object-oriented methodology. The main function of the control system is to provide real-time heating information to technicians or automated machines. The information includes heating location, torch speed, heating order, and others. The system development is achieved by following the five steps in the object-oriented procedure. First, requirements are specified and corresponding objects are determined. Then, the analysis, design, and implementation of the proposed system are sequentially carried out. The system consists of six subsystems, or modules. These are (1) the inference module with an artificial neural network algorithm, (2) the analysis module with the Finite Element Method and kinematics analysis, (3) the data access module to store and retrieve the forming information, (4) the communication module, (5) the display module, and (6) the measurement module. The system is useful, irrespective of the heating sources, i.e. flame/gas, laser, or high frequency induction heating. A newly developed automated line heating machine is connected to the proposed system. Experiments and discussions follow.

Improvement of Weldlines of an Injection Molded Part with the Aid of High-Frequency Induction Heating (고주파 유도가열을 적용한 사출성형품의 웰드라인 개선)

  • Seo, Young-Soo;Son, Dong-Hwi;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.437-440
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner. Thanks to its capability of rapid heating and cooling of mold surface, it has been recently applied to the injection molding. The present study applies the high-frequency induction heating for elimination of weldlines in an injection-molded plastic part. To eliminate weldlines, the mold temperature of the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. Through experiments, the maximum temperature of $143^{\circ}C$ is obtained on the mold surface around the elliptic coil, while the temperature of the mold plate is lower than $60^{\circ}C$. An injection molding experiment is then performed with the aid of induction heating, and the effect of induction heating conditions on the surface appearance of the weldline is investigated.

  • PDF

The Estimation of Curvature Deformation of Steel Plates in Water Cooling Process after Line Heating (선상 가열시 수냉 효과를 고려한 강판의 변형 추정에 관한 연구)

  • HwangBo, Hyeok;Yang, Park-Dal-Chi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.209-212
    • /
    • 2006
  • Line heating with water cooling is generally adapted process in the shipyards for the forming hull surface. The purpose of this paper is to develop a model of thermal deformation in water cooling process after the line heating. In order to simulate the cooling process, heat transfer analysis was performed by assuming the effects of water cooling as a negative heat-source. Experiment for the line heating with water cooling was performed for 9 models of plates in order to verify the cooling model. By using the suggested model for the water cooling process, it could be observed that the present method predict the plate deformations in the line heating more accurately.

  • PDF

Analysis of Line Heating Using Induction Heating (유도가열을 이용한 선상가열 해석방법)

  • Yun, Jin-Oh;Yang, Young-Soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.128-134
    • /
    • 2007
  • Induction heating process includes magnetic and thermal situations. In order to analyze the induction heating, material properties depending on temperature are considered. In this paper, three dimensional analysis of induction heating process for moving inductor is analyzed using moving coordinate. The skin effect is confirmed inside the steel plate in the electro-magnetic analysis. The heat generation at the initial state is different from that at the quasi-stationary state. Therefore, material properties depending on temperature must be considered. The results of finite element analysis agree well with the experimental temperature results.

  • PDF

Multi-point Dieless Forming Technology Using Local Heating Effect (국부가열효과를 활용한 다점성형공정기술)

  • Park, J.W.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.96-102
    • /
    • 2022
  • The multi-point dieless forming technology is one of flexible forming technologies that can form 3D curved surfaces of various shapes utilizing a lot of punch arrangements. A new technology that can simultaneously apply high-temperature forming and flexible forming technology by fusing local heating effect to such multi-point dieless forming technology was proposed in the present study. A simple local heating multi-point dieless forming apparatus was fabricated to confirm the applicability of this new technology. This equipment was designed to be used as a heat source by inserting heating cartridges in the head of the multi-point punch. Cartridges were used for all individual punches. Using the manufactured equipment, the time to raise the temperature to the target temperature and the surface temperature of the punch head part in contact with the plate were measured. In addition, forming experiments were carried out according to sheet material temperature (100 ℃, 200 ℃, and 300 ℃) to obtain forming results for each condition. The applicability and feasibility of this technology were confirmed through experimental results.

A Study on the Reduction the Thermal Contact Resistances at the Interface Between a Porous Metal Wick and Solid Heating Plate for a Circular Plate LHP (원판형 LHP 증발부의 소결 금속 윅에서의 접촉 저항에 관한 연구)

  • Jo, Jung-Rae;Choi, Jee-Hoon;Sung, Byung-Ho;Ki, Jae-Hyung;Ryoo, Seong-Ryoul;Kim, Chul-Ju
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2357-2362
    • /
    • 2008
  • LHP is different from a conventional heat pipes in design and heat and fluid flow passages. The situations of the former is much complex than the latter. In LHPs, evaporation occurs at the contact interface between the heating plate and the porous wick, so some micro channels machined at the contact interface serve to let the vapor flow out of the evaporator. This complexity of contact geometry was known to cause a high resistance to heat flow. The present work was to study the problem of heat passage across the contact surface for LHPs and determine those values contact resistance. For two cases of contact structures, the thermal contact resistances were examined experimentally, one being obtained through mechanical contact under pressure and the other through sintered bonding. Nickel powder wick and copper plate were used for specimens. The result showed that a substantial reduction of contact resistance of an order of degree could be obtainable by sintered bonding.

  • PDF

Temperature Control of the Aluminum Plate with Pottier Module by PWM Current Control (PWM 전류제어와 펠티어 소자를 이용한 알루미늄 판의 온도 제어)

  • Pang Du-Yeol;Kwon Tae-Kyu;Lee Seong-Cheol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.897-900
    • /
    • 2005
  • This paper presents temperature control of aluminum plate using Peltier module. As one of the thermoelectric effect, Peltier effect is heat pumping phenomena by electric energy. So if current is charged to Peltier module, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier module is used to control the temperature of small aluminum plate with heating and cooling ability of Peltier module with current control and fan On/OFF control. And current control of Peltier module was accomplished by PWM method. As a results of experiments, it takes about 125sec to control temperature of aluminium plate between $30^{\circ}C\;and\;70^{\circ}C$ and about 70sec between $40^{\circ}C\;and\;60^{\circ}C$, in ambient temperature $29^{\circ}C$ while operating cooling fan only while cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier module as a heating and cooling source.

  • PDF