• 제목/요약/키워드: Heating Electrode

검색결과 131건 처리시간 0.025초

허니컴 구조 SiC 발열체 성능 평가 시뮬레이션 (Simulation of Honeycomb-Structured SiC Heating Elements)

  • 이종혁;조영재;김찬영;권용우;공영민
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.450-454
    • /
    • 2015
  • A simulation method to estimate microstructure dependent material properties and their influence on performance for a honeycomb structured SiC heating element has been established. Electrical and thermal conductivities of a porous SiC sample were calculated by solving a current continuity equation. Then, the results were used as input parameters for a finite element analysis package to predict temperature distribution when the heating element was subjected to a DC bias. Based on the simulation results, a direction of material development for better heating efficiency was found. In addition, a modified metal electrode scheme to decelerate corrosion kinetics was proposed, by which the durability of the water heating system was greatly improved.

구리와 알루미늄 이종금속 판재간의 전기저항가열 표면마찰 스폿용접 특성 (Characteristics of Electric Resistance Heated Surface Friction Spot Welding Process of Copper and Aluminum Dissimilar Metal Sheets)

  • 순샤오광;진인태
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.99-109
    • /
    • 2022
  • In this study, an electric resistance-heated surface friction spot-welding process was proposed and tested for the spot-welding ability of copper and aluminum dissimilar metal sheets using electric resistance heating and surface friction heating. This process has welding variables, such as the current value, energizing cycles, rotational speed, and friction time. The current value and energizing cycle can affect the resistance heat, and the rotational speed of the rotating pin and friction time influence frictional heat generation. Resistance heating before friction heating has a preheating effect on the Cu-Al contact interface and a positive effect on preventing friction heat loss during the friction stage. However, because resistance preheating can soften the copper sheet and affect the contact stress and friction coefficient, it has difficulties that may adversely affect frictional heat generation. Therefore, the optimal combination of welding variables should be determined through simulations and experiments of the spot-welding process to determine the effects of electric resistance preheating on the suggested process. Through this procedure, it is known that the proposed spot-welding process can improve the welding quality during the spot welding of Cu-Al sheets.

중첩된 구리 판재의 전기저항가열 표면마찰 점용접(RSFSW)에 관한 연구 (A Study on Electric Resistance Heated Surface Friction Spot Welding Process of Overlapped Copper Sheets)

  • 순샤오광;진인태
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.93-100
    • /
    • 2021
  • Copper sheets has been used widely in electric and electron industry fields because they have good electric and heat conduction property of the material. And, in order to bond copper material, a kind of soldering process is generally used. But, because it is difficult to bond by soldering between overlapped thin copper sheets, so, another kind of brazing bonding process can be used in that case. But, because the brazing process needs wide bonding area, it needs heat treatment process in electric furnace. Generally, for spot welding of sheets, a conventional electric Resistance Spot Welding process(RSW) has been used, it has welding characteristics using contact resistance heating induced by electric current flow between sheets. But, because copper sheets has the low electric resistance, it is difficult to weld by electric resistance spot welding. So, in this study, an electric Resistance heated Surface Friction Spot Welding process(RSFSW) is suggested and is testified for the spot welding ability of thin copper sheets. It is known from the experimental results and simulation that the suggested spot welding process will be able to improve the spot welding ability of copper sheets by the combined three kinds of heating generated by surface friction by rotating pin, and conducted from heated steel electrode, and generated by contact resistance of electricity.

통전가열(Ohmic Heating) 처리조건에 따른 사과주스의 가열속도 변화 (Changes in Heating Profiles of Apple Juice by Ohmic Heating)

  • 김경탁;최희돈;김성수;홍희도
    • Applied Biological Chemistry
    • /
    • 제41권6호
    • /
    • pp.431-436
    • /
    • 1998
  • 통전가열(ohmic heating)을 사과주스의 가열 살균에 적용해보기 위하여 가열기 형태와 전압, 파형, 주파수 등 전기적 요소가 사과주스 모델용액의 통전가열 속도에 미치는 영향을 알아보았다. 100 VAC, 60 Hz의 상용전류를 이용한 통전가열시 컬럼형 가열기에서 전극간의 간격이 29, 22, 17 mm로 줄어듬에 따른 모델용액의 가열속도는 $7.8,\;21.0,\;47.4^{\circ}C/min$으로 크게 증가하였으며 또한 전극의 수를 병렬로 1, 2, 3쌍으로 증가시킬 시에도 $29.2,\;49.8,\;74.6^{\circ}C/min$으로 비례적으로 증가하여 전극의 간격이 작을수록, 전극의 표면적이 증가할수록 가열속도는 크게 빨라지는 것으로 나타났다. $60\;Hz{\sim}60\;kHz$ 범위의 주파수 변화에 따른 가열속도 차이는 나타나지 않았으며 파형에 따른 가열속도는 positive saw tooth wave를 제외하고 변화가 거의 없었다. 전압을 40에서 100 VAC로 높임에 따라 가열속도는 $9.5^{\circ}C/min$에서 $83^{\circ}C/min$로 크게 증가하여 전압과 가열속도는 정비례 관계가 있음을 알 수 있었다. 통전가열과 상업적 살균방법으로 제조한 사과주스 간에는 이화학적 특성의 차이가 없었다.

  • PDF

Numerical Simulation on Self-heating for Interlayer Tunneling Spectroscopy in $Bi_2Sr_2CaCu_2O_{8+x}$

  • Park, Jae-Hyun;Lee, Hu-Jong
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.18-22
    • /
    • 2007
  • For interlayer tunneling spectroscopy using a small stack of $Bi_2Sr_2CaCu_2O_{8+x}$ (Bi-2212) intrinsic junctions in a high-bias range, large self-heating takes place due to the poor thermal conductivity of Bi-2212. In this study, we numerically estimate the self-heating around a Bi-2212 sample stack for I-V or dI/dV-V measurements. Our results show that the temperature discrepancy between the Bi-2212 sample stack and top Au electrodes due to bias-induced self-heating is small enough along the c-axis direction of Bi-2212. On the other hand, the lateral temperature discrepancy between the sample stack and the Bi-2212 on-chip thermometer stack can be as large as ${\sim}20\;K$ for the highest bias required to observe the pseudogap hump structure. We thus suggest a new in-situ ac thermometry, employing the Au current-bias electrode itself deposited on top of the sample stack as the resistive thermometer layer, which is supposed to allow safe temperature measurements for the interlayer tunneling spectroscopy.

  • PDF

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.

고주파 가열기를 이용한 PZT와 연결기판의 접합기술 (Bonding Technology for PZT and Connection board using a High Frequency Heating Machine.)

  • 이종현;최시영
    • 센서학회지
    • /
    • 제8권1호
    • /
    • pp.89-94
    • /
    • 1999
  • In this study, a new technology to bond the PZT with connection board, which is a core technology for the fabrication of medical micro high frequency sensors, was developed. Two technologies were adopted. One is bonding of In using thermal heating, he other is bonding of Pb using a high frequency heating machine. In case of thermal eating, bonding was failed because of the contaminations of In surface. But, when using high frequency healing machine, we developed good bonding characteristics at various experimental conditions and thickness of the electrode material.

  • PDF

광전기촉매 공정과 전기/UV 공정을 이용한 Rhodamine B의 색 제거 (Decolorization of a Rhodamine B Using Photoelectrocatalytic and Electrolytic/UV Process)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.1023-1032
    • /
    • 2008
  • The feasibility study of the application of the photoelectrocatalytic and electrolytic/UV decolorization of Rhodamine B (RhB) was investigated in the photoelectrocatalytic and electrolytic/UV process with $TiO_2$ photoelectrode and DSA (dimensionally stable anode) electrode. Three types of $TiO_2$ photoelectrode were used. Thermal oxidation electrode (Th-$TiO_2$) was made by oxidation of titanium metal sheet; sol-gel electrode (5G-$TiO_2$) and powder electrode (P-$TiO_2$) were made by coating and then heating a layer of titania sol-gel and slurry $TiO_2$ on titanium sheet. DSA electrodes were Ti and Ru/Ti electrode. The relative performance for RhB decolorization of each of the photoelecoodes and DSA electrodes is: Ru/Ti > Ti > SG-$TiO_2$ > Th-$TiO_2$. It was observed that photoelectrocatalytic decolorization of RhB is similar to the sum of the photocatalytic and electrolytic decolorization. Therefore the synergetic effect was not showed in pthotoelectrocatalytic reaction. $Na_{2}SO_{4}$ and NaCl showed different decolorization effect between pthotoelectrocatalytic and electrolytic/UV reaction. In the presence of the NaCl, RhB decolorization of Ru/Ti DSA electrode was higher than that of the other photoelectrode and Ti electrode. Optimum current, NaCl dosage and UV lamp power of the electrolytic/UV process (using Ru/Ti electrode) were 0.75 A, 0.5 g/L and 16 W, respectively.

Comparison study of heatable window film using ITO and ATO

  • Park, Eun Mi;Lee, Dong Hoon;Suh, Moon Suhk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.300.2-300.2
    • /
    • 2016
  • Increasing of the demand for energy savings for buildings, thermal barrier films have more attracted. In particular, as heat loss through the windows have been pointed out to major problems in the construction and automobile industries, the research is consistently conducted for improving the thermal blocking performance for windows. The main theory of the technology is reflect the infrared rays to help the cut off the inflow of the solar energy in summer and outflow of the heat from indoors in winter to save the energy on cooling and heating. Furthermore, this is well known for prevent glare, reduces fading caused by harmful ultraviolet radiation and easy to apply on constructed buildings if it made as a film. In addition to these advantages, apply the transparent electrode to eliminate condensation by heating. Generally ITO is used as a transparent electrode, but is has a low stability in environmental factors. In this study, ITO and its alternative, ATO, is deposited by sputtering system and then the characteristic is evaluated each material based thermal barrier thin film. The optical property was measured on wide range of wavelength (200 nm 2500 nm) to know the transparency in visible wavelength and reflectivity in IR wavelength range. The electrical property was judged by sheet resistivity. Finally the changes of the temperature and current of the deposited film was observed while applying a DC power.

  • PDF

폴리머 배터리 전극제조용 압연 고온롤 표면의 형상 및 유한요소 열변형 해석 (Shapes and Thermomechanical Analyses of a Hot Roll for Manufacturing Electrodes of Polymer Batteries)

  • 김철;장동수;유선준
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.847-854
    • /
    • 2007
  • The battery electrode of a mobile phone is made of layered polymer coated on aluminum foils and the hot rolling process is applied to increase the density per volume of an electrode for a high capacity battery. The flatness of batteries surfaces should be less than $2{\mu}m$. To satisfy the required flatness, the deformation of roll surface due to bending and heating of the roll should be minimized. Complicated hot oil paths of $100^{\circ}C$ inside the roll are required for heating the polymer layers. FEA was used to calculate thermal deformations and temperatures distributions of the roller. Based on FEA, a modified surface curvature called a crown roll was suggested and this gave the area of 30% improved flatness compared with a flat roll. The flat roll satisfied the flatness of $2{\mu}m$ in the length of 340 mm and the crown roll resulted in the longer length of 460 mm. Experiments to measure the temperature distribution and thermal strain were performed and compared with FEA. There were only 6% difference between two results.