• Title/Summary/Keyword: Heating Cycle

Search Result 439, Processing Time 0.03 seconds

Risk Assessment Technique for Gas Fuel Supply System of Combined Cycle Power Plants (I) : Based on API RBI Procedures (복합화력발전의 가스연료 공급계통에 대한 위험도 평가 기법 연구 (I) : API RBI 절차에 기반한 위험도 평가)

  • Song, Jung Soo;Yu, Jong Min;Han, Seung Youn;Choi, Jeong Woo;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • The proportion of natural gas-fueled power generation is expanding due to the change of domestic energy policy pursuing reduction of dust and increasing clean energy consumption. Natural gas fuels used for the combined-cycle power plants and the district-heating power plants are operated at high temperature and high pressure in the fuel supply system. Accidents due to leakage of the gas such as fire and explosion should be prevented by applying risk management techniques. In this study, risk assessment was performed on the natural gas fuel supply system of a combined power plant based on the API RP 581 RBI code. For the application of the API RBI code, lines and segments of the evaluation target system were identified. Operational data and input information were analyzed for the calculations of probability of failure and consequence of failure. The results of the risk assessment were analyzed over time from the initial installation time. In the code-based evaluation, the gas fuel supply system was mainly affected by thinning, external damage, and mechanical fatigue damage mechanisms. As the operating time passes, the risk is expected to increase due to the external damage caused by the CUI(Corrosion Under Insulation).

Reproductive Cycle and Induced Sexual Maturation of the Pacific Oyster, Crassostrea gigas (참굴, Crassostrea gigas의 생식주기와 성 성숙 유도)

  • Min, Kwang-Sik;Kim, Bong-Seok;Kim, Tae-Ik;Hur, Young-Baek;Chung, Ee-Yung
    • The Korean Journal of Malacology
    • /
    • v.20 no.1
    • /
    • pp.75-84
    • /
    • 2004
  • Reproductive cycle, the condition index, sex ratio of the Pacific oysters, Crassostrea gigas were investigated by histological and morphometric data. The specimens were collected in the two oyster farms of Geoje and Namhae, Gyeongsangnam-do, Korea, from November 1995 to October 1996. Growth of shell length in two regions was similar, but growth of total weight of the oyster in Namhae was faster than that in Geoje oyster farm. The spawning periods in female and male clams were from July to October in Geoje and from June to October in Namhae oyster farm. Ripe oocytes were approximately 50 m in diameter. The reproductive cycle of in females and males in Geoje and Namhae oyster farms can be divided into five successive stages: early developing, late developing, ripe, partially spawned and spent/inactive. Monthly changes in gonad developmental phases showed somewhat different patterns between female and male clams except for the spawning period. On the whole, however, monthly changes in the gonad developmental phases showed a similar pattern in the same sex. The sex ratios of females to males in Geoje and Namhae oyster farms were not significantly different from a 1:1 sex ratio ($x^2$ = 0.55 (p > 0.05) in Geoje and $x^2$ = 0.27 ( p > 0.05) in Namhae). Artificial induction of maturation by heating of adult oysters (two-year-old) was investigated from 17 January to 18 March in 1996. Maturity at the fixed water temperature group of $20^{\circ}C$ was 80%, it showed the highest maturity of experimental groups cultured for five weeks. The survival (%) of Crassostrea gigas in the raised water temperature experimental groups (15, 20, $25^{\circ}C$) were over 98.5%, as similar to the control group (100%). But, the survival of C. gigas in the fixed water temperature experimental groups (15, 20, 25, $30^{\circ}C$) were decreased with the increase of the water temperatures. In the fixed water temperature experimental group of $30^{\circ}C$, the survival was 51.1%. Base on these results, the fixed water temperature of $20^{\circ}C$ was the best condition for artificial induction of sexual maturation.

  • PDF

Technical Feasibility of Ethanol-Kerosene Blends for Farm Kerosene Engines (에타놀-석유(石油) 혼합연료(混合燃料)의 농용석유(農用石油)엔진에의 이용(利用)에 관(關)한 연구(硏究))

  • Bae, Yeong Hwan;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-61
    • /
    • 1982
  • As an attempt to reduce the consumption of petroleum resources and to improve the performance of a kerosene engine, a series of experiments was conducted using several kinds of ethanol-kerosene blends under the various compression ratios. The engine used in this study was a single-cylinder, four-cycle kerosene engine having a compression ratio of 4.5. To investigate the feasibility of ethanol-kerosene blends in the original engine, kerosene and blends of 5-percent, 10-percent, and 20-percent-ethanol, by volume, with kerosene were used. And to investigate the feasibility of improving the performance of the kerosene engine, a portion of the cylinder head was cut off to increase the compression ratio up to 5.0 by reducing the combustion chamber volume. Kerosene and blends of 30-percent and 40-percent-ethanol, by volume, with kerosene were used for the modified engine with an increased compression ratio. Variable speed tests at wide-open throttle were also conducted at five speed levels in the range of 1000 to 2200 rpm for each compression ratio and fuel type. Volumetric efficiency, engine torque, and brake specific fuel consumption were determined, and brake thermal efficiency based on the lower heating values of kerosene and ethanol was calculated. The results obtained in the study are summarized as follows: A. Test with the original engine: (1) No abnormal conditions were found when burning ethanol-kerosene blends in the original engine. (2) Volumetric efficiency increased with ethanol concentration in blends. When burning blends of 5-percent, 10-percent, and 20-percent ethanol, by volume, with kerosene, average volumetric efficiency increased 1.6 percent, 2.6 percent, and 4.1 percent respectively, than when burning kerosene. (3) Mean engine torque increased 5.2 percent for 5-percent-ethanol blend, 9.3 percent for 10-percent-ethanol blend, and 11.5 percent for 20-percent-ethanol blend than for kerosene. Increase in engine torque when using ethanol-kerosene blends was due to the improved combustion characteristics of ethanol as well as an increase in volumetric efficiency. (4) Up to ethanol concentration of 20 percent, mean brake specific fuel consumption was nearly constant inspite of the difference in heating value between ethanol and kerosene. (5) Brake thermal efficiency increased 0.3 percent for 5-percent-ethanol blend, 3.8 percent for 10-percent-ethanol blend, and 6.8 percent for 20-percent-ethanol blend than for kerosene. B. Test with the modified engine with an increased compression ratio: (1) When burning kerosene, mean volumetric efficiency, engine torque, and brake thermal efficiency were somewhat lower than for the original engine. (2) Engine torque increased 15.1 percent for 30-percent-ethanol blend and 18.4 percent for 40-percent-ethanol blend than for kerosene. (3) There was no significant difference in brake specific fuel consumption regardless of ethanol concentration in blends. (4) Brake thermal efficiency increased 15.0 percent for 30-percent-ethanol blend and 19. 5 percent for 40-percent-ethanol blend than for kerosene.

  • PDF

The Technology Development Trends of Supercritical CO2 Power Generation (초임계 CO2 발전 기술개발 동향)

  • Kim, Beom-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.531-536
    • /
    • 2016
  • The worldwide research and development for high-efficiency power generation system is progressing steadily because of the growing demand for reducing greenhouse gas emissions. Many countries have spurred the research and development of supercritical $CO_2$ power generation technology since 2000 because it has the advantage of compactness, efficiency, and diversity. Supercritical $CO_2$ power generation system can be classified into an indirect heating type and a direct heating type. As of now, most studies have concentrated on the development of indirect type supercritical $CO_2$ power generation system. In the United States, NREL(National Renewable Energy Lab.) is developing supercritical $CO_2$ power generation system for Concentrating Solar Power. In addition, U.S. DOE(Department of Energy) also plans to start investing in the development of the supercritical $CO_2$ power generation system for coal-fired thermal power plant this year. GE is developing not only 10MW supercritical $CO_2$ power generation turbomachinery but also the conceptual design of 50MW and 450MW supercritical $CO_2$ power generation turbomachinery. In Korea, the Korean Atomic Energy Research Institute has constructed the supercritical $CO_2$ power generation test facility. Moreover, KEPRI(Korea Electric Power Research Institute) is developing a 2MW-class supercritical $CO_2$ power generation system using diesel and gas engine waste heat with Hyundai Heavy Industries.

Numerical Heat Transfer Analysis of die Electrowinning Cell in the Pyroprocessing (파이로프로세스 전해제련장치의 열전달 해석)

  • Yoon, Dal-Seong;Paek, Seung-Woo;Kim, Si-Hyung;Kim, Kwang-Rag;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.213-218
    • /
    • 2009
  • Electrowinning process recovers uranium with actinide elements from spent fuels and is a key step in the Pyroprocessing because of proliferation resistance. An analysis of heat transfer of the Electrowinning cell was conducted to develop basic tool for designing engineering-scale Electrowinner. For the calculation of the heat transfer, ANSYS CFX commercial code was adapted. As a result of the calculation, the vertical Heating Zone length had great effect upon temperature of LiCl-KCl eutectic salt. To maintain constant temperature in the salt, the Heating Zone length should be three times longer than the height of the salt. However, the argon and salt temperatures were barely affected by the Cooling Zone length. The temperature under the Cell cover was mainly influenced by the number of the cooling plates. When the cooling plates were installed more than the number of 5, temperature under the cover was maintained below $250^{\circ}C$. These temperature properties had similar tendency toward the temperature of the Cell which was measured from experiments, Simulated heat transfer information from this study could be used to design engineering-scale Electrowinner.

  • PDF

The Effect of Wind (Typhoon), Tide and Solar Radiation for the Water Stratification at Deukryang Bay in Summer , 1992 (하계 득량만의 연직혼합과 관련된 바람 (태풍), 조석, 태양에너지의 영향)

  • Lee, Byung-Gul;Cho, Kyu-Dae;Hong, Chol-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.256-263
    • /
    • 1995
  • This paper presents the evidence on the considerably strong stratification - destratification(SD) phenomena during spring - neap tidal cycle in summer of 1992 based on the observed temperature, salinity and density data. To find out the main factors causing SD in the bay, we computed the rate of potential energy balance of the surface heat flux, tidal and wind stirring proposed by Simpson and Hunter (1974) and Simpson and Bowders (1981) using observed data. It was found that the energy of the wind stirring was one - order smaller than those of the heat flux and the tidal stirring. It means that the variation of stratification phenomena in the bay mainly depend on tidal stirring and sea surface heating in summer if there was no exceptionally strong wind event like a typhoon. Finally, we tested the effects of typhoon on the mixing characteristics of the bay using the example of a empirical typhoon model. It was found that when wind speed is larger than 15m/sec in Deukryang Bay, the wind energy was always larger than the average heating energy based on empirical typhoon model test. Particularly, typhoon passed on the left side of the bay, strong wind energy happened, which is almost the same as tidal energy of spring tide.

  • PDF

Energy Consumption Analysis of Batch Type Heating Process for Energy Savings in Food Processing Plants (식품가공공장의 에너지 절감을 위한 batch식 가열 공정 에너지 소비 분석 : 사례 연구)

  • Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu;Chae-Young Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.817-823
    • /
    • 2023
  • Manufacturing plants face the challenge of reducing energy use in response to climate change. Reducing energy consumption can be seen as one of the most important issues, such as reducing production costs and improving efficiency. Among manufacturing industries, the increase in energy consumption in the food industry is gradually increasing along with the improvement of the standard of living and the increase in population. In order to save energy in food processing plants, it is important to identify and analyze energy consumption characteristics in energy-consuming processes. Prior to this, it is necessary to monitor and analyze existing energy consumption to derive reduction measures. In this study, a small and medium-sized food processing plant producing processed meat products was used as a case study to identify and analyze the energy consumption structure at typical cycle/stage level of the batch heating process. From this, we tried to establish realistic and quantitative goals that can be obtained under individual process operating conditions. The results of this study will be used as basic data for the development of diffusion and pervasive energy saving FEMS technology for common core processes of food factories of small and medium-sized enterprises in the future.

Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture (천연혼합냉매를 이용한 압축/흡수식 고온히트펌프의 실험적 연구)

  • Kim, Ji-Young;Park, Seong-Ryong;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang;Kim, Min-Sung;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1367-1373
    • /
    • 2011
  • This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than $90^{\circ}C$ when the heat source and sink temperatures were $50^{\circ}C$. Experiments with various $NH_3/H_2O$ mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific $NH_3$ concentration.

Preparation and properties of $LiCoO_2$ cathode for Li rechargeable cell (리튬 2차전지용 $LiCoO_2$양극의 제조 및 특성)

  • 문성인;정의덕;도칠훈;윤문수
    • Electrical & Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.317-324
    • /
    • 1994
  • In this study, new preparation method of LiCoO$_{2}$ was applied to develop cathode active material for Li rechargeable cell, and followed by X-ray diffraction analysis, electrochemical properties and initial charge/discharge characteristics as function of current density. HC8A72- and CC9A24-LiCoO$_{2}$ were prepared by heating treatment of the mixture of LiOH H$_{2}$O/CoCO$_{3}$(1:1 mole ratio) and the mixture of Li$_{2}$CO$_{3}$/CoCO$_{3}$(1:2 mole ratio) at 850 and 900.deg. C, respectively. Two prepared LiCoO$_{2}$s were identified as same structure by X-ray diffraction analysis. a and c lattice constant were 2.816.angs. and 14.046.angs., respectively. The electrochemical potential of CFM-LiCoO$_{2}$(Cyprus Foote Mineral Co.'s product), HC8A72-LiCoO$_{2}$ and CC9A24 LiCoO$_{2}$ electrode were approximately between 3.32V and 3.42V vs. Li/Li reference electrode. Stable cycling behavior was obtained during the cyclic voltammetry of LiCoO$_{2}$ electrode. According as scan rate increases, cathodic capacity decreases, but redox coulombic efficiency was about 100% at potential range between 3.6V and 4.2V vs. Li/Li reference electrode. Cathodic capacity of HC8A72-LiCoO$_{2}$ was 32% higher than that of CFM-LiCoO$_{2}$ and that of CC9A24-LiCoO$_{2}$ was 47% lower than that of CFM-LiCoO$_{2}$ at 130th cycle in the condition of lmV/sec scan rate. Constant cur-rent charge/discharge characteristics of LiCoO$_{2}$/Li cell showed increasing Ah efficiency with initial charge/discharge cycle. Specific discharge capacities of CFM and HC8A72-LiCoO$_{2}$ cathode active materials were about 93mAh/g correspondent to 34% of theretical value, 110mAh/g correspondent to 40% of theretical value, respectively. In the view of reversibility, HC8A72-LiCoO$_{2}$ was also more excellent than CFM- and CC9A24-LiCoO$_{2}$.

  • PDF

A Study on the Effect of Gamma Background in Low Power Startup Physics Tests (저출력 노물리 시험에서의 감마 Background의 영향에 관한 연구)

  • Bae, Chang-Joon;Lee, Ki-Bog
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.361-370
    • /
    • 1993
  • Low power physics tests should be peformed for the domestic pressurized light water reactors (PWRs) after refueling. The tests are peformed to ensure that operating characteristics of the core are consistent with predictions and that the core can be operated as designed. But in some low power physics tests, slow but steady reactivity increasing phenomena were noticed after step reactivity insertion by the control rod movement. These reactivity increasing phenomena are due to the low flux level and the gamma background because an uncompensated ion chamber (UIC) is used as the ex-core neutron detector. The gamma background may affect the results or the lour power physics tests. The aims or this paper are to analyze the grounds of such phenomena, to simulate a reference bank worth measurement test and to present a resolution quantitatively. In this study, the gamma background level was estimated by numerically solving the point kinetics equations accounting the gamma background effect. The reactivity computer check test was simulated to verify the model. Also, an appropriate neutron flux level was determined by simulating the reference bank worth measurement test. The determined neutron flux level is approximately 0.3 of the nuclear heating flux. This level is about 3 times as high as the current test upper limit specified in the test procedure. Then, the findings from this work were successfully applied to Kori unit 4 cycle 7 and Yonggwang unit 1 cycle 7 physics tests.

  • PDF