• Title/Summary/Keyword: Heat-resistance

Search Result 2,879, Processing Time 0.027 seconds

Estimation of Heat Generation in Multi-Contact Connector for Superconducting Magnet Application (초전도자석 시스템 응용을 위한 멀티-컨텍 커넥터의 열 발생 특성 평가)

  • Kim, M.S.;Choi, Y.S.;Kim, D.L.;Lee, Y.A.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.122-127
    • /
    • 2012
  • Current leads are one of the important components for carrying the current to the coil in the superconducting magnet system. Heat leakage through the current lead is the major factor of entire heat load in the cryogenic system because current leads carry the current from room temperature to near 4 K, connecting thermally each other. Therefore, minimization heat load through current lead can reduce the operating temperature of superconducting magnet. The semi-retractable current lead, composed of multi-contact connector and HTS element, is one of good options. Comprehension of Multi-contact connector's structure, contact resistance and heat generation is essential for estimating heat generation in current leads. Multi-contact connector has several louvers inside of socket and the shape, number, size of louvers are different with the size of connector. Therefore contact area, current path and contact resistance are also different. In this study, the contact resistance in multi-contact connector is measured using the electrical power as a function of connector's size and temperature. Also, the unique correlation of electrical contact resistance is derived and heat generation is estimated for superconducting magnet application.

The Effect of Heat Treatment on the Corrosion-Resistance for Ti-6Al-4V Alloy (Ti-6Al-4V합금의 열처리가 내식성에 미치는 영향)

  • 백신영;나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.453-459
    • /
    • 2003
  • In this study, the effect of heat treatment to the electrochemical polarization resistance for the Ti-6Al-4V alloy was measured. The solution heat treatments were carried out at $1066^{circ}E, 966^{\circ}$E$, followed by aging heat treated $550^{circ}E, 600^{circ}E, and 650^{circ}E$. The electrochemical polarization resistance behavior was measured by potentio-dynamic polarization in the 1N $HNO_3$ + 15ppm HF solution. The obtained results were as follows. 1. As solution heat temperature increased. the corrosion potential was increased, whereas passive current density and critical current density were decreased. 2. As aging heat temperature increased, the corrosion potential was almost constant, but passive current density was decreased 3. The results of composition test measured by EDS at grain boundary and near $\gamma'$ precipitates indicated that S, Cl. and Si which originated from base metal were segregated at the grain boundaries Al and Ti which were the main alloying element in $\gamma'$ were depleted at the $\gamma'$ precipitated. The depletion of Al and Ti in $\gamma'$ was caused to early breakdown of passive film.

Antibiotic Resistance of Salmonella spp. After Exposure to Mild Heat Treatment (살모넬라 균주들에서 열처리에 의한 항생제 내성 연구)

  • Su-Jin Kim;Woo-Suk Bang;Se-Hun Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Salmonella is widely prevalent in various environments and often detected in poultry. In this study, we investigated the effect of heat treatment on heat resistance via measuring the minimum inhibitory concentration (MIC) values of antibiotics after 3, 6, and 9 min of acclimatization to mild heat treatment (50℃) against 11 strains of Salmonella spp. Most strains were susceptible to chloramphenicol and their MIC values were maintained or decreased after heat treatment compared to the control. Most control and heat-treated strains showed susceptibility or intermediate resistance to ciprofloxacin. All isolates were susceptible to tetracycline, with the MIC increasing after heat treatment for S. Gaminara BAA 711. In the control, three, two, and six strains were susceptible, intermediate resistance, and resistant to gentamicin, respectively. Among them, S. Heidelberg ATCC 8326 had an intermediate MIC breakpoint of 8 ㎍/mL in the control; however, after 3 and 9 min of heat treatment, the MIC value increased to 16 ㎍/mL, indicating it to be resistant. The results of this study revealed the changes in antibiotic resistance in some of the 11 strains after heat treatment. MIC values of ciprofloxacin increased when S. Montevideo BAA 710 was heat treated for 3 and 6 min. MIC values of gentamicin increased after 3 min of heat treatment for S. Enteritidis 109 D1 and after 3 and 9 minutes of heat treatment for S. Heidelberg ATCC 8326. The MIC value of tetracycline increased when S. Gaminara BAA 711 was heat treated for 6 and 9 min.

An Electrochemical Evaluation on the Corrosion Resistance of Welding Zone due to Kinds of Repair Welding Filler Metals and Post Weld Heat Treatment (보수용접봉의 종류와 용접후 열처리가 용접금속부의 내식성에 미치는 영향에 관한 전기화학적 평가)

  • Shin, Jae-Hyun;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.310-316
    • /
    • 2010
  • Recently a fuel oil of the diesel engine of the marine ship is being changed with heavy oil of low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine such as cylinder liner, piston crown, spindle and seat ring of exhaust valves are predominantly increased. In particular the degree of wear and corrosion of piston crown is more seriously compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weldment of the piston crown is a unique method to prolong the its life in a economical point of view. In this case, filler metals having a high corrosion and wear resistance such as stellite 6, Inconel 625 and Inconel 718 are mainly being used for repair welding. However it has been often happened that piston crown on the ship,s job site is being actually inevitably welded with mild filler metals. Therefore in this study, filler metals such as E4301, E4313 and E4316 were welded at SS401 steel as the base metal, and corrosion property of their weld metals in the case of post weld heat treatment or not was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 0.1% $H_2SO_4$ solution. Corrosion resistance of the weld metal of E4301 was better than the other weld metals in the case of no heat treatment, however, its resistance was considerably decreased with post weld heat treatment(annealing:$625^{\circ}C$, 2 hr) compared to other weld metals. The weld metals of E4313 and E4316 showed a relatively good corrosion resistance by post weld heat treatment.

Development of the High-quality Coating System for the Steam Pipe of Ship (선박 스팀파이프용의 고내구성 도장 사양 개발 연구)

  • Lee, Sung-Kyun;Baek, Kwang-Ki;Hwang, Dong-Un;Song, Eun-Ha
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.46-52
    • /
    • 2006
  • For ships, heat resistant coating is applied on the aluminized steel pipe systems dealing with high temperature steam over $200^{\circ}C$. The coatings on these steam pipes should retain both heat resistance and anti-corrosion properties to provide long-term resistance against coating defects (rust, delamination and crack) under the harsh outdoor environment including repeated seawater wetting and condensation. Thus, it is important to improve the coating qualities and to reduce maintenance works for these steam pipe systems. In this study, five different commercial heat resistant coatings (A, B, C, D, E) were selected for evaluation. Various physical properties of these coatings were evaluated on the coatings applied on the aluminized steam pipes. FT-IR analysis was also employed to identify the factors contributing the degree of heat resistance and durability of each coating material. The results indicated that the heat resistance capacity of coatings increased with the increase of silicon content as well as the decrease of substituent content. Both products C and D showed the best coating qualifies, which can be standard coating systems for future steam pipe areas.

  • PDF

Evaluation of Ground Effective Thermal Conductivity and Borehole Effective Thermal Resistance from Simple Line-Source Model (단순 선형열원 모델을 이용한 지중 유효 열전도도와 보어홀 유효 열저항 산정)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.512-520
    • /
    • 2007
  • The design of a ground-source heat pump system includes specifications for a ground loop heat exchanger where the heat transfer rate depends on the effective thermal conductivity of the ground and the effective thermal resistance of the borehole. To evaluate these heat transfer properties, in-situ thermal response tests on four vertical test boreholes with different grouting materials were conducted by adding a monitored amount of heat to circulating water. The line-source method is applied to the temperature rise in an in-situ test and extended to also give an estimate of borehole effective thermal resistance. The effect of increasing thermal conductivity of the grouting materials from 0.818 to $1.104W/m^{\circ}C$ resulted in overall increases in effective thermal conductivity by 15.8 to 56.3% and reductions in effective thermal resistance by 13.0 to 31.1%.

A Study on the Oxidation Resistance of Aluminum Cast Iron by Aluminum Content (알루미늄 함량에 따른 알루미늄 주철의 내산화성에 관한 연구)

  • Kim, Dong-Hyuk
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.135-145
    • /
    • 2020
  • Aluminum cast iron has excellent oxidation resistance, sulfurization resistance, and corrosion resistance. However, the ductility at room temperature is insufficient, and at temperatures above 600?, the strength drops sharply and practicality is limited. In the case of heat-resistant cast iron, high-temperature materials containing Cr and Ni account for 30 to 50% or more. However, these high-temperature materials are expensive. Aluminum heat-resistant cast iron is considered as a substitute for expensive heat-resistant materials. Oxidation due to the aging temperature and holding time conditions increases more in 0 wt.% Al-cast iron than in 2 and 4 wt.% Al-cast iron according to oxidized weight and gravimetric oxide layer thickness measurements. As a result of observing the cross-section of the oxide layer, it was found to contain 0 wt.% of Al-cast iron silicon oxide-containing SiO2 or Fe2SiO4 oxide film. In cast iron containing aluminum, the thickness of the internal oxide layer due to aluminum increases as the aging temperature and retention time increase, and the amount of the iron oxide layer generated on the surface decreases.

Heat resistance of carbon nanoonions by molecular dynamics simulation

  • Wang, Xianqiao;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.247-255
    • /
    • 2011
  • Understanding the structural stability of carbon nanostructure under heat treatment is critical for tailoring the thermal properties of carbon-based material at small length scales. We investigate the heat resistance of the single carbon nanoball ($C_{60}$) and carbon nanoonions ($C_{20}@C_{80}$, $C_{20}@C_{80}@C_{180}$, $C_{20}@C_{80}@C_{180}C_{320}$) by performing molecular dynamics simulations. An empirical many-body potential function, Tersoff potential, for carbon is employed to calculate the interaction force among carbon atoms. Simulation results shows that carbon nanoonions are less resistive against heat treatment than single carbon nanoballs. Single carbon nanoballs such $C_{60}$ can resist heat treatment up to 5600 K, however, carbon nanoonions break down after 5100 K. This intriguing result offers insights into understanding the thermal-mechanical coupling phenomena of nanodevices and the complex process of fullerenes' formation.

Preparation and Characteristics of Heat-releasing Sheet Containing AlN(alunimum nitride) Powder (AlN 분말을 이용한 방열 Sheet의 제조와 그 특성)

  • Kim, Sang-Mun;Lee, Seok-Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.431-434
    • /
    • 2012
  • In this paper, heat-releasing sheets made of AlN powder and acryl binder as thermoset were prepared using tape casting method. The crystal structure and morphology, the thermal properties as nonvolatile solid content and thermal conductivity, and the surface resistance of heat-releasing sheet were measured by using X-ray diffractometer, field emission-scanning electron microscopy, thermo gravimetric analyzer and laser flash instrument, and surface resistance meter. It was proved that thermal conductivity is greatly affected by the content of binder in heat-releasing sheet. Superior thermal conductivity above 3.5 W/mK and suface resistance were obtained at heat-releasing sheet with above 90% of AlN powder.

The Constriction Resistance in Partially Heated Channel Plate Heat Exchangers (부분적으로 가열되는 평판열교환기의 열전달해석)

  • Kang Shin-Hyoung;Bae Soonhoon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.4 no.2
    • /
    • pp.115-118
    • /
    • 1975
  • The constriction thermal resistance due to the floor supports in the Ondol floor heating system was investigated. The resistance has significant influence on the uniformity of floor surface temperature and heat flux through the floor. The heat flux decreased as much as $30\%$ for the geometry of the same channel and support areas.

  • PDF