• 제목/요약/키워드: Heat-killed Lactobacillus rhamnosus

검색결과 5건 처리시간 0.022초

Probiotic and Antioxidant Properties of Novel Lactobacillus brevis KCCM 12203P Isolated from Kimchi and Evaluation of Immune-Stimulating Activities of Its Heat-Killed Cells in RAW 264.7 Cells

  • Song, Myung Wook;Jang, Hye Ji;Kim, Kee-Tae;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1894-1903
    • /
    • 2019
  • The purpose of this study was to determine the probiotic properties of Lactobacillus brevis KCCM 12203P isolated from the Korean traditional food kimchi and to evaluate the antioxidative activity and immune-stimulating potential of its heat-killed cells to improve their bio-functional activities. Lactobacillus rhamnosus GG, which is a representative commercial probiotic, was used as a comparative sample. Regarding probiotic properties, L. brevis KCCM 12203P was resistant to 0.3% pepsin with a pH of 2.5 for 3 h and 0.3% oxgall solution for 24 h, having approximately a 99% survival rate. It also showed strong adhesion activity (6.84%) onto HT-29 cells and did not produce β-glucuronidase but produced high quantities of leucine arylamidase, valine arylamidase, β-galactosidase, and N-acetyl-β-glucosaminidase. For antioxidant activity, it appeared that viable cells had higher radical scavenging activity in the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay, while in the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, heat-killed cells had higher antioxidant activity. Additionally, L. brevis KCCM 12203P showed higher lipid oxidation inhibition ability than L. rhamnosus GG; however, there was no significant difference (p < 0.05) between heat-killed cells and control cells. Furthermore, heat-killed L. brevis KCCM 12203P activated RAW 264.7 macrophage cells without cytotoxicity at a concentration lower than 108 CFU/ml and promoted higher gene expression levels of inducible nitric oxide synthase, interleukin-1β, and interleukin-6 than L. rhamnosus GG. These results suggest that novel L. brevis KCCM 12203P could be used as a probiotic or applied to functional food processing and pharmaceutical fields for immunocompromised people.

가열살균한 Lactobacillus rhamnosus와 Lactobacillus plantarum의 콜레스테롤 저하 효과 (Hypocholesterolemic Effect of Lyophilized, Heat-Killed Lactobacillus rhamnosus and Lactobacillus plantarum)

  • 김대원;양대혁;김선영;김광수;정명준;강상모
    • 한국미생물·생명공학회지
    • /
    • 제37권1호
    • /
    • pp.69-74
    • /
    • 2009
  • 유산균은 사람의 장 기능을 증가시키는 것으로 잘 알려져 있다. 우리는 배지에서 콜레스테롤 농도를 낮추는 균주 Lactobacillus rhamnosus CBT 1702 and Lactobacillus plantarum CBT 1209를 screening하였다. 이 균주들을 이용하여 콜레스테롤 저하효과를 보았다. 콜레스테롤과 담즙산이 함유된 MRS배지에서 콜레스테롤을 동화, 담즙산을 탈결합시키는 것을 확인하였다. 렛트에게 이들 균주를 혼합식이하여 콜레스테롤 제거능 정도를 보았다. 실험은 대조군, 고콜레스테롤군(HCD군), 고콜레스테롤에 생균첨가군(LLAB 군)과 고콜레스테롤에 가열살균 균 첨가군(HKLAB)으로 하였다. 그 결과 LLAB군과 HKLAB군이 혈중 콜레스테롤 농도를 HCD군에 비하여 각각 35%, 40% 유의적으로 감소시켰다. 그리고 특히 HKLAB군은 HCD군 및 LLAB군과 비교하여 HDL-C를 약 20%씩 유의적으로 증가시키고 LDL-C를 각각 60%, 20%정도 씩 유의적으로 감소시켰다. 동맥 경화지수인 AI와 심장위험인자 CRF를 비교하였을 때 LLAB 군과 HKLAB군은 HCD군 대비 각각 1.5배, 2배 유의적으로 낮았다. 또한 HKLAB군은 LLAB군에 비해 AI는 30% 유의적으로 낮고 CRF도 24% 유의적으로 낮았다. 결론적으로 본 유산균 Lactobacillus rhamno년 CBT 1702와 Lactobacillus plantarum CBT 1209는 고지혈 랫트의 AI와 CRF값을 감소시켜 동맥경화와 심장질환의 가능성을 감소시켰으며 이의 가열살균 균체는 이에 더욱 효과적이었으며 이러한 증상을 개선시키는 유용한 기능성 원료로 가능성을 보여주었다.

Heat-Killed Lactobacillus plantarum KCTC 13314BP Enhances Phagocytic Activity and Immunomodulatory Effects via Activation of MAPK and STAT3 Pathways

  • Jeong, Minju;Kim, Jae Hwan;Yang, Hee;Kang, Shin Dal;Song, Seongbong;Lee, Deukbuhm;Lee, Ji Su;Park, Jung Han Yoon;Byun, Sanguine;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1248-1254
    • /
    • 2019
  • Identification of novel probiotic strains is of great interest in the field of functional foods. Specific strains of heat-killed bacteria have been reported to exert immunomodulatory effects. Herein, we investigated the immune-stimulatory function of heat-killed Lactobacillus plantarum KCTC 13314BP (LBP). Treatment with LBP significantly increased the production of $TNF-{\alpha}$ and IL-6 by macrophages. More importantly, LBP was able to enhance the phagocytic activity of macrophages against bacterial particles. Activation of p38, JNK, ERK, $NF-{\kappa}B$, and STAT3 was involved in the immunomodulatory function of LBP. LBP treatment significantly increased production of $TNF-{\alpha}$ by bone marrow-derived macrophages and splenocytes, further confirming the immunostimulatory effect of LBP in primary immune cells. Interestingly, the immunomodulatory effects of LBP were much stronger than those of Lactobacillus rhamnosus GG, a well-known probiotic strain. These results indicate that LBP can be a promising immune-enhancing functional food agent.

Effects of dietary inactivated probiotics on growth performance and immune responses of weaned pigs

  • Kang, Joowon;Lee, Jeong Jae;Cho, Jin Ho;Choe, Jeehwan;Kyoung, Hyunjin;Kim, Sung Hun;Kim, Hyeun Bum;Song, Minho
    • Journal of Animal Science and Technology
    • /
    • 제63권3호
    • /
    • pp.520-530
    • /
    • 2021
  • This experiment was performed to verify whether dietary heat-killed Lactobacillus rhamnosus (LR) improves growth performance and modulates immune responses of weaned pigs. Ninety-six weaned pigs ([Landrace × Yorkshire] × Duroc; 6.95 ± 0.25 kg body weight [BW]; 28 d old) were randomly allocated to four treatments: 1) a basal diet without heat-killed LR (CON), 2) T1 (CON with 0.1% heat-killed LR), 3) T2 (CON with 0.2% heat-killed LR), and 4) T3 (CON with 0.4% heat-killed LR). Each treatment had six pens with four pigs (6 replicates per treatment) in a randomized completely block design. The heat-killed LR used in this study contained 1 × 109 FU/g of LR in a commercial product. Pigs were fed each treatment for four weeks using a two-phase feeding program to measure growth performance and frequency of diarrhea. During the last week of this study, all diets contained 0.2% chromic oxide as an indigestible marker. Fecal sampling was performed through rectal palpation for the consecutive three days after the four adaptation days to measure apparent total tract digestibility (ATTD) of dry matter, crude protein, and gross energy (GE). Blood sampling was also performed on day 1, 3, 7, and 14 after weaning to measure immune responses such as serum tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), C-reactive protein (CRP), and cortisol. The heat-killed LR increased (p < 0.05) growth rate, feed efficiency, and ATTD of GE for overall experimental period compared with CON, but reduced (p < 0.05) post-weaning diarrhea. In addition, pigs fed diets contained heat-killed had lower concentrations of serum TNF-α (d 7; p < 0.05), TGF-β1 (d 7; p < 0.10), and cortisol (d 3 and 7; p < 0.05) than pigs fed CON. In conclusion, dietary heat-killed LR improved growth rate, modified immune responses of weaned pigs, and alleviated post-weaning diarrhea.

Immuno-Modulatory Effects of Bacteriocin-Producing Pediococcus pentosaceus JWS 939 in Mice

  • Choi, Hyun-Jong;Kim, Ji-Ye;Shin, Myeong-Su;Lee, Sang-Myeong;Lee, Wan-Kyu
    • 한국축산식품학회지
    • /
    • 제31권5호
    • /
    • pp.719-726
    • /
    • 2011
  • Pediococcus pentosaceus JWS 939 (JWS 939) is a nonpathogenic bacteriocin-producing probiotic isolated from the duck intestine. This study assessed the immunomodulatory effects of JWS 939 and compared them with those of Lactobacillus rhamnosus GG (LGG), a well-known immune enhancer. The immune-enhancing effects of JWS 939 were measured by measuring the production of nitric oxide (NO) and cytokines in C57BL/6 mouse peritoneal macrophages. In addition, to assess the immune enhancement abilities of JWS 939, in vivo, a Listeria monocytogenes challenge mice model was used. The results showed that heat-killed JWS 939 induced more NO and interleukin (IL)-$1{\beta}$ production in mouse peritoneal macrophages than in LGG, and that oral administration of viable JWS 939 in mice increased more NO, IL-$1{\beta}$, and tumor necrosis factor (TNF)-${\alpha}$ level than in LGG in serum upon L. monocytogenes challenge. In addition, mice fed with JWS 939 had a longer survival time after lethal challenge with L. monocytogenes, and these effects were stronger than those induced by LGG. Collectively, P. pentosaceus JWS 939 is a remarkable strain that, by releasing bacteriocin and enhancing host immune responses, may have potential as a duck feed additive to suppress pathogens.