• 제목/요약/키워드: Heat-island

검색결과 491건 처리시간 0.029초

지역규모 분석 모델을 이용한 서울 도시열섬 특성 연구 (A Study of the Urban Heat Island in Seoul using Local Analysis System)

  • 천지민;이선용;김규랑;최영진
    • 한국대기환경학회지
    • /
    • 제30권2호
    • /
    • pp.119-127
    • /
    • 2014
  • A very high resolution weather analysis system (VHRAS) of 50 m horizontal resolution is established based on LAPS. VHRAS utilizes the 3 hourly forecast data of the Unified Model (UM) of the Korea Meteorological Administration (KMA) with the horizontal resolution of 12 km as initial guess fields. The analysis system ingests the automatic weather station (AWS) data as input observations. The analysis system operates every hour for Seoul, Korea region in real time basis. It takes less than 10 minutes for one analysis cycle. The size of grid of the analysis domain is $800{\times}660$, respectively. The analysis results from December 2010 to February 2011 showed that the mean biases of temperature, maximum and minimum temperature were -0.07, 1.6, $0.2^{\circ}C$, respectively. The temperature in the central part of the city revealed relatively higher value than that of the surrounding mountainous areas, which showed a heat island feature. The heat island appears in zonal direction since the central city region is developed along a large river. Along the heat island, the eastern region was warmer than the western region. The warmer temperature in the western part of the heat island was caused by anthropogenic heat change in conjunction with the change of land use. This system will provide more reliable weather data and information in Seoul.

추이대(推移帶)를 중심으로 한 경상북도 3개 도시의 열섬 평가 (Evaluation of the heat island in transition zone of three cities in Kyungpook, Korea)

  • 박인환;장갑수;김종용
    • 환경영향평가
    • /
    • 제8권2호
    • /
    • pp.73-82
    • /
    • 1999
  • This study analyzed the relationship between NDVI(Normalized Difference Vegetation Index) and urban heat island in three cities: Daegu, Kyungju, and Pohang for understanding the degree of nature conservation concentrating in the transition zone of them. Daegu city is the third city in Korea which has a dense population. Kyungju is a traditional city which has good nature. Pohang is an industrial city which has those of characters of Daegu and Kyungju. Landsat 1M data in May 17, 1997 were used for the analysis of heat island. There were about four theoretical models to estimate the surface temperature from TM data: Two-point linear model, Linear regression model, Quadratic regression model, and Cubic regression model. In this study, Linear regression model had been utilized to analyze the urban heat island. On the resultant images, the transition zone of Daegu was urbanized more extremely than those of other two cities. It is thought that the analysis of relationship between NDVI and surface temperature, used in this study, is regarded as one of effective methodologies for urban-environmental detection from satellite imageries.

  • PDF

도시개발에 따른 대기환경 변화가 건강에 미치는 영향연구 (A Study about the Impact of Atmospheric Environmental Changes by Urban Development on Human Health)

  • 김재철;이종범;천태훈;장윤정
    • 환경영향평가
    • /
    • 제19권1호
    • /
    • pp.15-28
    • /
    • 2010
  • Because deterioration of air quality and urban heat island directly harm health of citizens, Health Impact Assessment (HIA) and Environmental Impact Assessment (EIA) for urban development projects needs to conduct analysis of their impacts objectively. This study aims to review appropriate methods for assessment of air quality used at each stage of urban development and to investigate prediction and assessment methods of urban heat island. In addition, by evaluating impacts of climate change following supposed urban construction performed in the central area of Korea on public health, it examines usefulness of HIA for urban construction. When urban heat island prediction and HIA method suggested in this study are applied to an imaginary city, they predict urban heat island properly and the impacts of climate changes on public health inside the city could be determined clearly by calculating life-climate index and bio-climate index related with thermal environment from the model.

Identifying Urban Heat Island Effects due to Urban Land Use Change

  • Shin Dong-hoon;Lee Kyoo-seock
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.22-24
    • /
    • 2004
  • The land use has changed rapidly since 1960s in accordance with urbanization in Seoul Metropolitan Region. As a result, the urban microclimate has undergone changes as well. This study aims to recognize trend of the urban heat island change which is caused by land use change during urbanization in large city. Thermal data of Landsat TM images in 1987 and 1999 were for land surface temperature change detection in the study.

  • PDF

The Effectiveness of Roof Planting for Reducing Urban Heat Island Phenomenon

  • Kobayashi Takahiro;Gotoh Keinosuke;Yoshioka Ryouhei;Tanaka Yoshiki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.533-536
    • /
    • 2004
  • Presently, heat island phenomenon, leading towards global warming, is one of the major environmental problems. As a solution of this problem, roof and surface wall planting is considered to be effective. Accordingly, the objective of this study is to examine the effectiveness of roof planting in reducing the heat island phenomenon. The results of the study show that, planted area of the observed house roof had lower average temperature, in between $l5-20^{\circ}C,$ in comparison with that of the unplanted area of the roof.

  • PDF

건물과 녹지배치가 외부 열환경 변화에 미치는 영향 분석 (Effect of Building and Green on Outside Thermal Environment)

  • 손원득;최현상;최영식
    • 한국산업융합학회 논문집
    • /
    • 제13권2호
    • /
    • pp.55-61
    • /
    • 2010
  • Significant air temperature increases in urban areas are known as the heat island phenomenon in a global scale. Therefore, we use CFD simulation in order to analyze quantitative effects by placing a Building and Green on the heat island phenomenon in urban area. The present study quantitatively analyzes the Urban Heat Island Effects, Outdoor air temperature, and Humidity and air flow.

  • PDF

A Preliminary Analysis of the Impact of Urban Green Spaces on the Urban Heat Island Effect Using a Temperature Map

  • Myeong, Soo-Jeong
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.675-680
    • /
    • 2010
  • Temperature is one of the main issues in climate change, and the urban heat island effect in highly developed urban areas is an important issue that we need to deal with. This study analyzed the extent of the cooling effects of urban green spaces. The study used a surface temperature map of Seoul. It found that the cooling effects of green space was observed within limited distances, although it varied a little depending on the parks investigated. The cooling effect distance ranged from 240m to 360m, averaging about 300m. It also found the size of an urban green space does not make much difference in cooling the surrounding areas. Although further investigation with diverse urban areas should be conducted on this matter, the results did imply that many small green spaces in the neighborhood are more effective than a single big green space in mitigating the heat island effects of cities.

옥상녹화 조성에 따른 열환경 변화분석 (An Analysis of Thermal Environment Change according to Green Roof System)

  • 박지영;정응호;김대욱;차재규;시미즈 아키
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.100-103
    • /
    • 2009
  • The impermeable area on the surface of city has been increased as buildings and artificial landcover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural eco system. There arise the environmental problems peculiar to city including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate the heat reduction effect according to the development of green roof system and to quantify the heat reduction effect by analyzing through simulation the heat environment before and after green roof system. For thermal environment analysis, Thermo-Render 3.0 was used that was developed by Tokyo Industrial College to simulate. The simulation showed that the heat island index before and after the development of tree-planting on rooftop changed maximum $0.86^{\circ}C$ and the surface temperature changed about $20^{\circ}C$. Only with lawn planting, heat reduction effect was great and it means that the green roof system in low-management-light-weight type is enough to see effect. The simulation identified that only lawn planting for green rooftop brought such difference and could lower the heat island index at a narrow area. It is judged that application of green roof system to wider areas might relieve urban heat island phenomenon positively.

  • PDF

도시공간을 고려한 야간시간대의 열섬특성 분석 (Analysis of Heat Island Characteristics Considering Urban Space at Nighttime)

  • 송봉근;박경훈
    • 한국지리정보학회지
    • /
    • 제15권1호
    • /
    • pp.133-143
    • /
    • 2012
  • 본 연구는 창원시 도시지역을 대상으로 도시공간을 고려한 야간시간대의 도시열섬특성을 파악하기 위해 1:1,000 축척의 토지이용도 및 토지피복도와 DTM, 그리고 ASTER 위성영상에서 추출된 야간시간대의 지표온도자료를 활용하였다. 분석결과에 따르면, 야간시간대는 건물이 밀집되어있는 단독주거지역이 상업지역이나 공공시설지역보다 열섬강도가 높았고, 이것은 에너지소비에 의한 인공열 방출이 열섬형성에 많은 영향을 미치기 때문으로 판단된다. 또한 이러한 점 때문에 공업지역에서는 건물은 가동시간에 따라 온도차이가 매우 크게 나타났다. 한편, 도시녹지지역과 하천지역은 도시열섬을 완화하는 냉각효과가 있는 것으로 확인되었으며, 열섬강도가 높은 지역에 녹지 및 수변공간의 조성으로 열섬강도를 낮출 필요가 있을 것으로 판단된다. 이상과 같은 결과는 야간시간대의 도시열섬을 완화하는데 있어 개발계획 수립시 효율적인 공간활용을 위해 기초자료로 이용될 것으로 사료된다.

대구지역 인공열의 시공간적 분포 추정에 관한 연구 (Estimation of the Temporal and Spatial Distribution of Anthropogenic Heat in Daegu)

  • 안지숙;김해동;홍정혜
    • 한국환경과학회지
    • /
    • 제11권10호
    • /
    • pp.1045-1054
    • /
    • 2002
  • Urban atmospheric conditions are usually settled as warmer, drier and dirtier than those of rural counterpart owing to reduction of green space and water space area heat retention in surfaces such as concrete and asphalt, and abundant fuel consumption. The characteristics of urban climate has become generally known as urban heat island. The purpose of this study is to investigate the temporal and spatial distribution of the heat emission from human activity, which is a main factor causing urban heat island. In this study, the anthropogenic heat fluxes emitted from vehicles and constructions are estimated by computational grid mesh which is divided by 1km $\times$ 1km. The anthropogenic heat flux by grid mesh can be applied to a numerical simulation model of the local circulation model. The constructions are classified into 9 energy-consumption types - hospital, hotel, office, department store, commercial store, school, factory, detached house and flat. The vehicles classified into 4 energy-consumption types - car, taxi, truck and bus. The seasonal mean of anthropogenic heat flux around central Daegu exceeded $50 W/m^2$ in winter. The annual mean anthropogenic heat flux exceeded $20 W/m^2$. The values are nearly equivalent to the anthropogenic heat flux in the suburbs of Tokyo, Japan.