• Title/Summary/Keyword: Heat-input

Search Result 1,119, Processing Time 0.022 seconds

A Study on the Calculating Method of the Heat Input Efficiency in Arcspot Welding (아크 스폿 용접의 입열효율 계산 방법에 관한 연구)

  • Jang, Kyoung-Bok;Cho, Sang-Myoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1065-1070
    • /
    • 2003
  • In arc spot welding process, the arc is not moving and heat input is concentrated in one spot so that the heat input efficiency of arc is higher than that of GMAW. In other words, the heat input efficiency of arc change during weld time because arc start is done in spot and weld metal is filled. Therefore, the heat input model of arc spot welding should be different from that of general GMAW. In present study, the calculating model of heat input efficiency in arc spot welding was suggested by temperature monitoring near spot in arc spot welding of copper plate. The result showed that the heat input efficiency of arc was changed three times during weld time. The accuracy of calculating method of heat input efficiency was verified by heat transfer analysis of arc spot welding process using finite element method.

A Study of Heat Input Distribution on the Surface during Torch Weaving in Gas Metal Arc Welding (가스 메탈 아크 용접에서 토치 위빙 중 표면 입열 분포 해석에 관한 연구)

  • 김용재;이세현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.316-319
    • /
    • 2001
  • In weaving welding where a V groove exists, the heat input distribution is an important factor that determines the defectiveness of the bead shape, undercut and over-lap. In this study, the amount of heat input, which is determined by the welding current, voltage, speed and weaving conditions is calculated through numerical methods. Furthermore, the heat input distribution as a two- dimensional heat source was observed when applied to each groove. Therefore, a heat input control algorithm is suggested to prevent the defects generated from undercut or over-lap, which was verified through an analysis of the heat input distribution.

  • PDF

A Study of Heat Input Distribution on the Surface during Torch Weaving in Gas Metal Arc Welding

  • Kim, Y.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • In weaving welding where a V groove exists, the heat input distribution is an important factor that determines the defectiveness of the bead shape, undercut and over-lap. In this study, the amount of heat input, which is determined by the welding current, voltage, speed and weaving conditions is calculated through mathematical development and numerical methods. Furthermore, the heat input distribution as a two- dimensional heat source was observed when applied to each groove.

  • PDF

오스테나이트계 스테인레스강의 육성 용접부에서 고온균열 감수성에 미치는 용접입열의 영향

  • 김대영;김희진
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.40-46
    • /
    • 1988
  • The effect of heat input on the content of residual .delta.-ferrite and the hot cracking susceptibility in the austenitic stainless steel overlaid on the carbon steel was studied in the range of heat input from 7.5 to 15.1 KJ/cm. Present study shows that residual .delta.-ferrite content in the overlay is mainly determined by the dilution of the base metal (carbon steel) which is in turn affected by heat input, i.e. the amount of dilution decreases as heat input increase. Accordingly, higher heat input results in a substantial increase in Cr equivalent but a little increase in Ni equivalent due to the less dilution of carbon from base metal. This fact can explain the result obtained in this study, i, e, the higher content of .delta.-ferrite in the weld deposit made with higher heat input. This in turn causes more resistant overlaying weld metal to hot cracking.

  • PDF

WELDING HEAT-INPUT LIMIT OF ROLLED STEELS FOR BUILDING STRUCTURES (SN400BAND SN490B) BASED ON SIMULATED HAZ TESTS

  • Sakino, Yoshihiro;Horikawa, Kohsuke;Kamura, Hisaya
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.714-719
    • /
    • 2002
  • In The Great Hanshin-Awaji Earthquake, the general yield brittle fractures were observed in beam-column connections of steel building frames. Among many influencing factors which affect the general yield brittle fracture, it can be considered that fracture toughness has substantial effects. Some studies are making clear the required toughness for the base metal and the weld metal, but general values are not proposed. Moreover, it seems that it is also important to pay attention to the toughness decrease in the weld heat affected zone (weld HAZ), because the toughness decrease occurs in the HAZs of mild steel. In this paper, the relationship between toughness of simulated HAZs of "the rolled steels for building structures (SN)" and the weld heat-input limit of the SN steel are investigated, in an attempt to provide the required toughness for HAZs. The relationships between the increase of the hardness value and toughness, and changes of microstructure after weld heat-input are also discussed. The main results are summarized as follows. 1) The SN400B can keep its toughness at higher heat-inputs compare to the SN490Bs. 2) The steel grade, which becomes harder than other steel grades at the same heat-input, has smaller absorbed energy and smaller limit of heat-input. 3) The weld heat-input limit of the SN400B and the SN490B are proposed separately for some required toughness values.

  • PDF

Effect of Welding Heat Input and PWHT Cooling Rate on Mechanical Properties of Welded Region at SAW of 1.25Cr-0.5Mo Steel for Pressure Vessel (압력용기용 1.25Cr-0.5Mo 강의 Submerged Arc Welding시 입열 및 PWHT 냉각속도가 용접부 기계적 성질에 미치는 영향)

  • Lee Dong-Hwan;Park Jong-Jin
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.26-31
    • /
    • 2004
  • In order to propose the optimum welding condition for field application, the effects of welding heat input and cooling rate at PWHT on the mechanical properties were investigated. Submerged arc welding of 1.25Cr-0.5Mo steel for pressure vessel was conducted at welding heat inputs of 15.2kJ/cm, 30.9kJ/cm, and 44.8kJ/cm, and cooling rates of 184$^{\circ}C$/hr, 55$^{\circ}C$/hr, and 2$0^{\circ}C$/hr at PWHT. From the test results, as the welding heat input increase up to 30.9kJ/cm, the changes of microstructure and impact toughness were small. At the heat input of 44.8kJ/cm, however, toughness decreased obviously due to the coarsening of coarse-grained HAZ and formation of ferrite at bainite grainboundary of weld metal. On the other hand, cooling rates at PWHT did not effect on the changes in microstructure and mechanical properties. Even though tensile strength and impact toughness at all welding conditions of this study were above the minimum specification requirement, it was confirmed that heat input of 30.9kJ/cm was the optimum welding condition to improve welding performance by higher heat input.

A Study on temperature behavior of pulsating heat pipe with different diameter in evaporator (증발부 내경 변화에 따른 진동형 히트파이프의 온도 거동에 관한 연구)

  • Kim, Jihoon;Park, Chulwoo;Shah, Syed Abdullah;Kim, Daejoong
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.10-18
    • /
    • 2019
  • In this study, the temperature behavior of Pulsating Heat Pipe (PHP) according to the diameter change were studied by limiting the diameter change to only the evaporator. To investigate operation of PHP in various heat input, heat input power was increased from 10 to 120 W. The results show operation can be divided into 3 regimes by temperature behavior. Thermal resistance was increased before start-up and decreased with increasing heat input. At 110 W heat input, thermal conductivity of 2 mm PHP was 8 .times higher compare to thermal conductivity of copper. Further, to investigate details of temperature behavior in higher heat input, FFT analysis was conducted. Based on the results, when the deviation of peak frequency in each section is lowest, the thermal resistance has lowest value.

Low Heat Input Welding to Improve Impact Toughness of Multipass FCAW-S Weld Metal

  • Bang, Kook-soo;Park, Chan;Jeong, Ho-shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.540-545
    • /
    • 2014
  • Multipass self-shielded flux cored arc welding with different heat inputs (1.3–2.0 kJ/mm) was conducted to determine the effects of the heat input on the proportion of the reheated region, impact toughness, and diffusible hydrogen content in the weld metal. The reheated region showed twice the impact toughness of the as-deposited region because of its fine grained ferritic-pearlitic microstructure. With decreasing heat input, the proportion of the reheated region in the weld metal became higher, even if the depth of the region became shallower. Accordingly, the greatest impact toughness, 69 J at −40℃, was obtained for the lowest heat input welding, 1.3 kJ/mm. Irrespective of the heat input, little difference was observed in the hardness and diffusible hydrogen content in the weld metal. This result implies that low heat input welding with 1.3 kJ/mm can be performed to obtain a higher proportion of reheated region and thus greater impact toughness for the weld metal without the concern of hydrogen cracking.

Effects of Heat Input and Preheat/interpass Temperature on Strength and Impact Toughness of Multipass Welded Low Alloy Steel Weld Metal (다층용접한 저합금 용접금속의 강도와 인성에 미치는 입열량 및 예열/패스간 온도의 영향)

  • Bang, Kook-soo;Jung, Ho-shin;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.481-487
    • /
    • 2015
  • The effects of the heat input and preheat/interpass temperatures on the tensile strength and impact toughness of multipass welded weld metal were investigated and interpreted in terms of the recovery of the alloying elements and microstructure. Increases in both the heat input and preheat/interpass temperatures decreased the tensile strength of the weld metal. A lower recovery of alloying elements, especially Mn and Si, and smaller area fraction of acicular ferrite in the weld metal were observed in higher heat input welding, resulting in a lower tensile strength. In contrast, only a microstructure difference was observed at a higher preheat/interpass temperature. The impact toughness of the weld metal gradually increased with an increase in the heat input because of the lower tensile strength. However, it decreased again when the heat input was larger than 45 kJ/cm because of the much smaller area fraction of acicular ferrite. No effect of the preheat/interpass temperature on the impact toughness was observed. The formation of a weld metal heat-affect zone showed little effect on the impact toughness of the weld metal in this experiment.

Modeling of Welding Heat Input for Residual Stress Analysis (용접 잔류응력 해석을 위한 Heat Input Model 개발)

  • 심용래;이성근
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.34-47
    • /
    • 1993
  • Finite element models were developed for thermal and residual stress analysis for the specific welding problems. They were used to evaluate the effectiveness of the various welding heat input models, such as ramp heat input function and lumped pass models. Through the parametric studies, thermal-mechanical modeling sensitivity to the ramp function and lumping techniques was determined by comparing the predicted results with experimental data. The kinetics for residual stress formation during welding can be developed by iteration of various proposed mechanisms in the parametric study. A ramp heat input function was developed to gradually apply the heat flux with variable amplitude to the model. This model was used to avoid numerical convergence problems due to an instantaneous increase in temperature near the fusion zone. Additionally, it enables the model to include the effect of a moving arc in a two-dimensional plane. The ramp function takes into account the variation in the out of plane energy flow in a 2-D model as the arc approaches, travels across, and departs from each plane under investigation. A lumped pass model was developed to reduce the computation cost in the analysis of multipass welds. Several weld passes were assumed as one lumped pass in this model. Recommendations were provided about ramp lumping techniques and the optimum number of weld passes that can be combined into a single thermal input.

  • PDF