• Title/Summary/Keyword: Heat-exchanger

Search Result 2,449, Processing Time 0.03 seconds

Pressure Loss and Heat Transfer Characteristics of Heat Exchanger Using Static Mixing Technology (정적혼합기술 응용 열교환기의 압력손실 및 열전달 특성)

  • Park Sang-Kyoo;Yang Hei-Cheon;Jeon Jun-Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 2006
  • Heat transfer augmentation in heat exchangers has received much attention in recent years, mainly due to energy efficiency and environmental considerations. Many active and Passive techniques are currently being employed in heat exchangers, with some inserts providing a cost-effective and efficient means of augmenting heat transfer. The Purpose of this paper is to determine the pressure loss and heat transfer characteristics of a heat exchanger using static mixing technology. Experimental measurements were taken on two set-ups: a single tube heat exchanger and a shell-tube heat exchanger with two static mixing inserts. It was concluded that the static mixing inserts resulted in an increase in the pressure loss and heat transfer characteristics as can be expected.

NUMERICAL ANALYSIS TO DESIGN HIGH TEMPERATURE HEAT EXCHANGER OF BETA TYPE STIRLING ENGINE IN 3-D COMBUSTION FIELD (3차원 연소장에서의 베타 형태의 스털링엔진 고온 열교환기 설계를 위한 수치해석 연구)

  • Kang, S.H.;Kim, H.J.;Chung, D.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • Numerical study is conducted to design the high temperature heat exchanger of Stirling engine by using the commercial CFD solver, FLUENT. The Fin-tube type of heat exchanger is designed as a reference model by considering the type of engine which is ${\beta}$-configuration. To find the optimal design of heat exchanger in heat transfer capacity numerical calculation is conducted by changing the shape, the number, and material of reference model in three-dimensional combustion field. Adjusted one-way constant velocity of working fluid that is helium is considered as the representative velocity of oscillating flow. The optimal design of heat exchanger considering the heat transfer capability is suggested by using the calculation results.

Development of a Catalytic Heat Exchanger (촉매연소 열교환기 개발)

  • Jeong, Nam-Jo;Kang, Sung-Kyu;Seo, Yong-Seog;Cho, Sung-June;Ryou, In-Su
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.63-69
    • /
    • 1999
  • The heat exchanger using the catalytic combustion can be applied to petrochemical processes and to VOC incineration facilities. In this work, the experiment for a new fin typed catalytic heat exchanger was conducted. Catalysts for the heat exchanger were determined by testing their catalytic activities over LPG in a micro-reactor. Based on experimental results of the fin typed catalytic heat exchanger, a small scaled heat exchange system was made to test its feasibility as a reboiler used in petrochemical processes. The results showed that the catalytic heat exchanger could combust off-gases effectively and at the same time could recover completely heat produced by catalytic combustion.

  • PDF

An Experimental Study on the Defrosting Behavior of a Fin-Tube Heat Exchanger

  • Lee, Kwan-Soo;Jhee, Sung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.101-111
    • /
    • 1999
  • The effect of various conditions of frosting and defrosting on the defrosting behavior of a fin-tube heat exchanger has been examined experimentally. An electric heater is used for defrosting in a fin-tube heat exchanger. There are several local maxima in the water draining rate. The amount of residual water on the heat exchanger after completion of defrosting is kept constant due to surface tension on the heat exchanger. Without considering degradation of the thermal performance due to the frosting, the defrosting efficiency is improved with increasing amount of frost irrespective of the frosting condition. The defrosting behavior is affected by frosting density as well as frost accumulation, both of which vary with the experimental operating conditions. The heat loss to the surrounding air decreases, and melting and defrosting efficiencies show high values with decreasing heat input.

  • PDF

Thermal Performance Analysis of Circular Coil Type Internal Heat Exchanger for Transcritical $CO_2$ System (천임계 $CO_2$ 시스템용 코일형 내부 열교환기의 열성능 해석)

  • 박병규;김근오;김무근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.531-542
    • /
    • 2002
  • Transcritical$CO_2$ systems are under consideration for use as residential/mobile air conditioners. In these systems, an internal heat exchanger is usually adopted to improve both capacity and/or COP of the $CO_2$ system in lower operating pressure range of gas cooler. A program has been developed to analyse the performance of internal heat exchangers using the section-by-section method. The internal heat exchanger of coaxial configuration is first analyzed and fairly good agreements with the data are obtained, And then the internal heat exchanger of multiple circular coil configuration has been investigated. The results obtained from the parametric study provide the guidelines for the initial design and manufacturing concepts of the internal heat exchanger in transcritical $CO_2$ system. Further studies are necessary to develop the heat transfer correlations of carbon dioxide in the tubes to obtain more accurate results.

The Study on the Optimization of Premixed Gas Burner and Heat Exchanger (예혼합 가스버너와 열교환기의 최적화 연구)

  • Lee Kang Ju;Jang Gi Hyun;Lee Chang Eon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.7-13
    • /
    • 2003
  • This study was carried out to optimize premixed burner and heat exchanger of the condensing gas boiler which can save energy by utilizing latent heat of combustion gas and reduce pollutant in exhaust gas. The heat exchanger of the gas boiler was composed of three parts, which were an upper, lower, and coil heat exchanger. The upper heat exchanger was placed outside of the premixed burner and a lower heat exchanger was located under the upper heat exchanger. And, coil heat exchanger rounded the outer surface of an upper and lower heat exchanger. The boiler designed by this research reaches turn-down ratio 4:1 in the domain of equivalence ratio 0.75${\~}$0.8 and thermal efficiency of $97\%$. Emission of NOx and CO concentration was under 20ppm and 140ppm at equivalence ratio 0.8. When diameter of the burner is replaced from 60mm to 50mm, emission of CO was reduced about 50ppm remarkably.

  • PDF

Heat Exchange Element Made of Plastic for Cooling of Telecommunication Cabinet (통신 함체 냉각용 플라스틱 재질의 열교환 소자)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.702-708
    • /
    • 2017
  • The heat generation rate in a telecommunications cabinet keeps increasing due to the increased usage of mobile devices. Insufficient removal of the heat increases the cabinet temperature, which results in the malfunction of the electronic devices. In this study, tests were conducted on aluminum and plastic heat exchangers for cooling a telecommunications cabinet, and the results were compared with theoretical predictions. The aluminum heat exchanger comprised counter flow parallel channels with 4.5-mm pitch, and the plastic heat exchangers comprised cross or cross-counter flow triangular channels with 2.0-mm pitch. The volume of the cross flow heat exchanger was the same as that of the aluminum heat exchanger, and the volume of the cross-counter heat exchanger was 33% larger than that of the aluminum heat exchanger. The results show that the heat transfer rate is the highest for the cross-counter heat exchanger and lowest for the aluminum one. The temperature efficiency of the cross-counter heat exchanger was 56% higher than that of the aluminum one and 20% higher than that of the cross flow heat exchanger. The pressure drop of the cross-counter heat exchanger was approximately the same as that of the aluminum one. The heat exchange efficiency was the highest for the cross-counter heat exchanger and lowest for the cross flow heat exchanger. The theoretical analysis somewhat overestimated or underestimated the data.

Development of a Particle Bed Heat Exchanger(II) -An Experimental Study on Heat Transfer Characteristics of Fluidized Bed Heat Exchanger with Double Pipe (Parallelflow) (입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(II) - 유동층형(流動層形) 이중관식(二重管式) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究)(병행류식(竝行流式)))

  • Kim, G.C.;Yoo, J.O.;Yang, H.J.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.127-136
    • /
    • 1990
  • Air-solid bed has been known to be an effective heat transfer augmentation device which could be applied to heat exchangers. In this study, pressure drop and heat transfer characteristics of vertical annular fluidized bed heat exchanger with air flowing through were studied experimentally. The experiments was conducted to calculate overall heat transfer coefficient on fluidized bed heat exchangers immersed single vertical tube and investigate minimum fluidized velocity in fluidized bed of alumina beads and steel balls. The influence of flow direction, particle diameter, the heights of static bed and air mass fluidizing velocity has been examined. The experimental results showed the optimum operating condition and effective static bed height for fluidized bed heat exchangers. For the same power loss, comparisions of heat transfer effect between the fluidized bed heat exchanger and the single phase forced convetion heat exchanger indicate that both miniaturization of heat exchanger and heat transfer augmentation at low flow velocity are possible by application of the air-solid to heat exchangers.

  • PDF

Development & Performance Evaluation of Ground Heat Exchanger Utilizing PHC Pile Foundation of Building (PHC 파일 기초를 이용한 지중 열교환기 개발 및 성능 평가)

  • Yu, Hyung-Kyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.56-64
    • /
    • 2008
  • The objective of this study is to develope ground heat exchanger using PHC file used to building foundation, and it's element technology. So we construct PHC ground heat exchanger in the apartment house's PHC foundation and evaluate it's performance. First, we study PHC file type, heat exchanger pipe, grouting materials, and present apartment house's foundation condition for PHC ground heat exchanger and design it's proto type. Second according to grouting materials, we estimate construction convenience, and it's performance. Construction convenience side, PB 22 A pipe and sand grouting with moisture was good for PHC ground heat exchanger elements. Experiment result is very superior. Thermal conductivity B, C type(sand, gravel) was respectively 32.4 W/m$^{\circ}C$, 36.5 W/m$^{\circ}C$, D(concrete) Type 27.8 W/m$^{\circ}C$, E(bentonite) Type 19.6 W/m$^{\circ}C$. Thermal interference for 4 day experiment period in 3.8 m was very small. So PHC file is good for using ground heat exchanger.

Numerical Analysis on the Condensation Heat Transfer and Pressure Drop Characteristics of the Horizontal Tubes of Modular Shell and Tube-Bundle Heat Exchanger (모듈형 쉘-관군 열교환기에서의 응축열전달 및 압력강하 특성에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Park, Byung-Kyu;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.191-198
    • /
    • 2001
  • A numerical analysis of the heat and mass transfer and pressure drop characteristics in modular shell and tube bundle heat exchanger was carried out. Finite Concept Method based on FVM and $k-\varepsilon$ turbulent model were used for this analysis. Condensation heat transfer enhanced total heat transfer rate $4\sim8%$ higher than that of dry heat exchanger. With increasing humid air inlet velocity, temperature and relative humidity, and with decreasing heat exchanger aspect ratio and cooling water velocity, total heat and mass transfer rate could be increased. Cooling water inlet velocity had little effect on total heat transfer.

  • PDF