• Title/Summary/Keyword: Heat-affected zone

Search Result 595, Processing Time 0.025 seconds

Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel (Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구)

  • Moon, Joonoh;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

Microstructures in friction-stir welded Al 7075-T651 alloy (Al 7075의 마찰교반 용접부 미세조직에 관한 연구)

  • Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong;Jeon, Jeong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.331-338
    • /
    • 2005
  • The grain structure, dislocation density and second phase particles in various regions including the stir zone(SZ), thermo-mechanically affected zone(TMAZ), and heat affected zone(HAZ) of a friction stir weld 6.35mm thick aluminum 7075-T651 alloy were investigated and compared with the base metal. The microstruectures of nugget zone were compared according to tool rotation speeds and tool transition speeds. The hardness profiles of nugget zone were increased, while decreasing rotation speed and increasing welding speed. The optimal microstructure was gained at the low rotation speed 800rpm and th high welding speed 124mm/min. The nugget microstructures of fracture surface, transgranular dimple and quasicleavage type were showed different fracture type with the HAZ, shear fracture type.

  • PDF

Effects of Tool Rotation and Transition Speed during Friction Stir Welding of Al 7075-T651 Alloy (Al 7075-T651의 마찰교반 용접에 대한 회전속도와 이송속도의 영향)

  • Han, Min-Su;Jeon, Jeong-Il;Jang, Seok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.532-539
    • /
    • 2007
  • The 7075-T651 Al alloy was welded by friction stir welding. Microstructure, macro behaviors and fracture type in the nugget, thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ) of the welded part were compared to base metal. The microsturctures of nugget zone were compared with tool rotation speeds and various tool transition speed. When the rotation speeds were decreased and transition speeds were increased, the hardness of nugget zone were decreased. Also, the optimal microstructure was observed at the low rotation speed of 800rpm and the high transition speed of 124mm/min. The transgranular dimple and quasi-cleavage at fractured part of nugget zone were investigated.

The Effects of Welding Conditions on the Joint Properties of the Friction Stir Welded AZ31B-H24 Mg Alloys (마찰교반용접한 AZ31B-H24 마그네슘 합금의 용접특성에 미치는 용접조건의 영향)

  • 이원배;방극생;연윤모;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.87-92
    • /
    • 2002
  • Weldability of Friction Stir Welded(FSW) AZ31B-H24 Mg alloy sheet with 4m thick was evaluated by changing welding speed. The sound welding conditions mainly depended on the suffiicient welding heat input during the process. The insufficient heat input resulted in the void like defect in the weld zone. Higher welding speed caused a larger inner void or lack of bonding. The defects were distributed at the stir zone or the transition region between stir zone and thermo-mechanical affected zone (UE). The size of defects slightly increased with increasing welding speed. These defects had a great effect on the joint strength of weld zone. The weld zone was composed of stir zone, TMAZ and heat affected zone. The stir zone was cosisted of fine recrystallized structure with $5-8\mu\textrm{m}$ in the mean grain size. The hardness of weld zone was near the 60HV, which was slightly lower than that of base metal. The maximum joint strength was about 219MPa that was 75% of that of base metal and the yield strength was also lower than that of base metal partly due to the existance of defects.

Mechanism of intragranular ferrite formation in heat-affected zone of titanium killed steel

  • Terasaki, Hidenori;Komizo, Yu-Ichi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.197-201
    • /
    • 2009
  • A lot of work is carried out concerning to acicular ferrite formation in the weld metal of high strength and low-alloy steel. Those results are suggesting that oxides that contain titanium elements provides nucleation site of intragranular ferrite, referred as acicular ferrite. Thus, when intragranular ferrite is expected to form in heat-affected zone, oxide containing titanium element should be formed in the steel. However, normal steel is deoxidized by using aluminum element (Al-killed steel) with little oxygen content. It means almost oxygen is deoxidized with aluminum elements. In the present work, in order to form the acicular ferrite in the heat affected zone, with the same concept in the case of weld metal, the steel deoxidized with titanium element (titanium killed-steel) is prepared and the acicular ferrite formation is observed in detail by using laser-conforcal microscopy technique. The confocal technique makes it possible that the morphological change along the phase transformation from austenite to ferrite is in-situ tracked. Thus, the inclusion that stimulated the ferrite nucleation could be directly selected from the observed images, in the HAZ of the Ti-killed steel. The chemical composition of the selected inclusion is analyzed and the nucleation potential is discussed by changing the nucleation site with boron element. The potency for the ferrite nucleation is summarized and the existence of effective and ineffective manganese sulfide for nucleation is made clear.

  • PDF

Prediction of the Heat-Affected Zone in the Micro Electric Discharge Machining (미세 방전가공에서의 열영향층 예측)

  • Kim T.G.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.422-425
    • /
    • 2005
  • This study predicts the heat-affected zone (HAZ) after electrical discharge machining. To predict HAZ, the temperature distribution is calculated using FEM. Heat flux is calculated from electrical energy, and it can be assumed Gaussian distribution. Plasma channel expands as time goes. Copper and NAK80 are used as the workpiece material. The depth of HAZ in simulation is determined by temperature distribution. The simulation results were compared with a developed actual single discharge crater. Through investigating the cross section of simulated & actual craters, the depth of HAZ in simulation and experiment are compared. Simulation model can predict the crater shape.

  • PDF

Microstructure and Mechanical Property in the Weld Heat-affected Zone of V-added Austenitic Fe-Mn-Al-C Low Density Steels

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.31-34
    • /
    • 2015
  • Microstructure and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-Mn-Al-C low density steels were investigated through transmission electron microscopy analysis and tensile tests. The HAZ samples were prepared using Gleeble simulation with high heat input welding condition of 300 kJ/cm, and the HAZ peak temperature of $1200^{\circ}C$ was determined from differential scanning calorimetry (DSC) test. The strain- stress responses of base steels showed that the addition of V improved the tensile and yield strength by grain refinement and precipitation strengthening. Tensile strength and elongation decreased in the weld HAZ as compared to the base steel, due to grain growth, while V-added steel had a higher HAZ strength as compared than V-free steel.

A Study on the Behavior in the Corner Crack Propagation of Al-Alloy used for the Shipbuilding by the Corrosion Fatigue (부식피로에 의한 선박용 알루미늄 합금제 용접부의 균열 전파기동에 관한 연구)

  • Im, U-Jo;Lee, Jin-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.164-171
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuilding industries such as marine structures, ships and chemical plants, it takes much interest in the study of corrosion fatigue characteristics that was close up an important role in mechanical design. In this study, characteristics of corner crack propagation on the base metal and heat affected zone of 5086 Al-Alloy was tested by using of a rotary bending fatigue tester and was investigated under the environments of specific resistance, $\rho$=25$\Omega$ cm and air. The corrosion fatigue crack initiation and corrosion fatigue life sensitivity were quantitatively inspected for 5086 Al-Alloy in the specific resistance, $\rho$=25$\Omega$ cm. Main results obtained are as follows: (1) The corrosion sensitivity of heat affected zone under specific resistance, $\rho$=25$\Omega$cm shows approximately 1.69~2.22 and corrosion sensitivity of base metal is more susceptible than that of heat affected zone. (2) The corrosion fatigue life sensitivity on heat affected zone decreases eminently than that of initial corrosion fatigue crack. (3) The characteristics of quarter elliptical corner crack propagation shows that depth crack is more grown than surface crack at crack initiation, but the surface crack is more propagated than depth crack as the crack propagation is increased. (4) The surface crack and depth crack growth on heat affected zone by softness show delayed phenomenon than that of base metal.

  • PDF

Thermal Fatigue Properties of Synthetic Beat Affected Zone in Ferritic Stainless Steel (페라이트계 스테인리스강의 재현 용접열영향부 열피로 특성)

  • Hong, S.G.;Cho, M.H.;Kang, K.B.
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.79-84
    • /
    • 2009
  • Ferritic stainless steel, which has been used as material for decoration parts in automobile, is recently used as material for the exhaust system due to its good performance at high temperature. To improve the fuel efficiency and purify automotive exhaust gas, it is needed to increase the temperature of exhaust gas. However, it is frequently reported that the rising of the temperature of exhaust gas increases thermal stress at exhaust manifold, which results in thermal fatigue failure in welded joints. Therefore, in this study, effects of chemical composition of steel and welding parameters on thermal fatigue properties of synthetic heat affected zone in ferritic stainless steel have been investigated. It has been found that thermal fatigue life in heat affected zone is affected by bead shape of welded joint and amount of soluble Nb in steel. Especially, Nb-Ti added steel has higher thermal fatigue life in comparison to Nb added steel, which is attributed to difference of precipitation behavior in both steels.

Mechanical Characteristics and Macro-and Micro-structures on Friction Stir Welded Joints with 5083O Al Alloys (Al 5083O합금의 마찰교반용접부의 조직과 특성평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.104-111
    • /
    • 2009
  • This paper shows the behaviors of macro- and micro-structures and mechanical properties for specimen's welding region welded by FSW. according to welding conditions with 5mm thickness aluminum 5083O alloy plate. It apparently results in defect-free weld zone in case traverse speed was changed to 32 mm/min under conditions of anti-clockwise direction and tool rotation speed such as 800 and 1250 rpm with tool's pin diameter of 5 ${\Phi}mm$ and shoulder diameter of 20 ${\Phi}mm$, pin length of 4.5 mm and tilting angle of $2^{\circ}$. The ultimate stress of ${\sigma}_T=331$ MPa and the yield point of 147 MPa are obtained at the condition of the travel speed of 32 mm/min with the tool rotation speed of 1250 rpm. There is neither voids nor cracks on bended surface of $180^{\circ}$ after bending test. The improvement of toughness after impact test was found. The lower rotating and traverse speed became, the higher were yield point, maximum stress and elongation(%) with the stresses and the elongation(%) versus the traverse speed diagram. Vickers hardness for cross section of welding zone were also presented. The typical macro-structures such as dynamically recrystallized zone, thermo-mechanically affected zone and heat affected zone and the micro-structures of the transverse cross-section were also showed. However, the author found out that the region of 6mm far away from shoulder circumference was affected by friction heat comprehensively, that is, hardness softened and that part of micro-structures were re-solid-solution or recrystallized, the author also knew that there is no mechanically deformation on heat affected zone but there are the flow of plastic deformation of $45^{\circ}$ direction on thermo-mechanically affected zone and the segregation of Al-Mg on nugget. The solid solution wt(%) of parent material as compared against of friction stir welded zone was comprehensively changed.