• Title/Summary/Keyword: Heat treatment time

Search Result 1,451, Processing Time 0.03 seconds

Effects of Heat Treatment on the Nutritional Quality of Milk: II. Destruction of Microorganisms in Milk by Heat Treatment (우유의 열처리가 우유품질과 영양가에 미치는 영향: II. 열처리에 의한 우유의 미생물 사멸효과)

  • Kim, Kwang-Hyun;Park, Dae Eun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.55-72
    • /
    • 2017
  • The second article of 'Effects of heat treatment on the nutritional quality of milk,' titled 'Destruction of microorganisms in milk by heat treatment' and authored by Dr. Seong Kwan Cha, who worked at the Korea Food Research Institute, covers the heat-stable microorganisms that exist in milk after pasteurization. The article focusses on the microbiological quality of raw milk and market milk following heat treatment, and is divided into four sub-topics: microbiological quality of raw milk, survey and measurement of microorganisms killed in raw milk, effect on psychrophilic and mesophilic microorganisms, and effect of heat treatment methods on thermoduric microorganisms. Bacillus spp. and Clostridium spp. are sporeforming gram-positive organisms commonly found in soil, vegetables, grains, and raw and pasteurized milk that can survive most food processing methods. Since spores cannot be inactivated by LTLT (low temperature long time) or HTST (high temperature short time) milk pasteurization methods, they are often responsible for food poisoning. However, UHT (ultra high temperature) processing completely kills the spores in raw milk by heating it to temperatures above $130^{\circ}C$ for a few seconds, and thus, the UHT method is popularly used for milk processing worldwide.

Synthesis and Characterization of Middle Infrared Transmission ZnS Ceramics by Heat Treatment Time (열처리 시간에 따른 중적외선 투과 ZnS 세라믹의 합성과 특성)

  • Kwon, Tae-Hyeong;Yeo, Seo-Yeong;Park, Chang-Sun;Kim, Chang-Il;Hong, Youn-Woo;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.360-365
    • /
    • 2017
  • In this study, a heat treatment process was applied to ZnS nano-powder to improve the optical properties of ZnS ceramic, and the characteristics of heat treatment time were studied. The ZnS nano-powders were synthesized by hydrothermal synthesis. The heat treatment was carried out at $550^{\circ}C$ for 0.5, 1, 2, and 4 hours in a vacuum atmosphere ($10^{-2}torr$). X-ray diffraction and scanning electron microscope analyzes confirmed the change of crystal phase and grain size to confirm the structural change with heat treatment time. The heat treated ZnS nano-powder was sintered by hot pressing, and the change of optical properties of the ZnS ceramic was analyzed by infrared spectroscopy.

Corrosion Resistance Characteristics of Cold Rolled Steel by Cr-free Green Organic/Inorganic Hybrid Coating Solution (크롬 프리 친환경 유/무기 하이브리드 코팅액에 의한 냉연강판의 내식특성)

  • Nam, Ki Woo;Kim, Jung Ryang;Choi, Chang Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In the past, a very popular method for reducing the corrosion on zinc involved the use of chemical conversion layer coatings based on $Cr^{+6}$. However, there is an important problem with using chromium salts as a result of restrictive environmental protection legislation. This study investigated the optimum condition for galvanized steel using an organic/inorganic solution with a Ti composition. In the case of a fixed heat treatment time, the corrosion resistance values of LR-0727(1) and LR-0727(2) were improved as the heat treatment temperature increased, and the optimum minimum temperature decreased with the heat treatment time. At the optimum heat treatment condition of two coating solutions, the heat treatment time of the LR-0727(1) solution was shorter than LR-0727(2) for the same heat treatment temperature. LR-0727(1) coated specimens did not show desquamation, and all of the specimens showed a good adhesive property. In contrast, in the case of the LR-0727(2) coated specimens, desquamation arose. Therefore, the adhesive property of LR-0727(1) was superior to that of LR-0727(2). The pencil hardness had a 3H average for all of the coating solutions and heat treatment conditions. In the case of a corrosion resistance test with boiling water, the coated specimens of LR-0727(1) were discolored, but LR-0727(2) was not. Finally, LR-0727(1) was more moisture proof than LR-0727(2).

Effect of Carburizing Heat Treatment Process on Microstructure and Residual Stress Changes in AISI 9310 Steel. (AISI 9310강의 침탄열처리 경로가 조직 및 잔류응력 변화에 미치는 영향)

  • Youngchul Jeong;Joohyeon Bae;Jaeman Park;Seungjun OH;Janghyun Sung;Yongsig Rho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.128-137
    • /
    • 2024
  • In this study, the carburizing heat treatment process used in aircraft gear manufacturing was compared with the general carburizing heat treatment process using AISI 9310 steel. The process of carburizing followed by slow cooling, and then quenching after austenitizing(Process A) showed less compressive residual stress and less retained austenite in the surface layer compared to the process of quenching directly after carburizing(Process B). In prpcess B, there was a large amount of retained austenite when quenched immediately after carburization, and when treated with subzero, martensite rapidly increased and the compressive residual stress increased significantly, but at the same time, there is a risk of cracking due to severe expansion in volume. Therefore, in the case of aviation parts, it is believed that a step-by-step heat treatment cycle was adopted to ensure stability against heat treatment cracks. As a result of the final tempering after sub-zero treatment, the A process specimen showed a deeper effective case depth and HV700 depth and a higher hardness value above HV700 than the B process specimen.

Effects of Heat Treatment on the Nutritional Quality of Milk. IV. Effects of Heat Treatment on the Physical and Nutritional Properties of Milk Protein (우유의 열처리가 우유품질과 영양가에 미치는 영향: IV. 우유의 열처리가 우유단백질의 이화학적 성질과 영양에 미치는 영향)

  • Jung, Jong-Wook;Jung, Jiyoon;Mim, Tae Sun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.270-285
    • /
    • 2017
  • Among milk proteins, caseins are not subjected to chemical changes during heat treatment of milk; however, whey proteins are partially denatured following heat treatment. The degree of whey protein denaturation by heat treatment is decreased in the order of high temperature short time (HTST) > low temperature long time (LTLT) > direct-ultra-high temperature (UHT) > indirect-UHT. As a result of heat treatment, several changes, including variations in milk nitrogen, interactions between beta-lactoglobulin and k-casein, variations in calcium sulfate and casein micelle size, and delay of milk coagulation by chymosin action, were observed. Lysine, an important essential amino acid found in milk, was partially inactivated during heat treatment. Therefore, the available amount of lysine decreased slightly (1~4% decrease) after heat treatment, However, the influence of heat treatment on the nutritional value of milk was negligible. Nutritional value and nitrogen balance did not differ significantly between UHT and LTLT in milk. In conclusion, our results showed that heat treatment of milk did not alter protein quality. Whey proteins denatured to a limited extent during the heat treatment process, and the nutritional value and protein quality were unaffected by heat treatment.

A Study of Annealing Heat-treatment for Ti(Grade 2) by Electrochemical Methods (전기화학적 방법을 이용한 Ti(Grade 2)재의 최적 어닐링 열처리에 대한 연구)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.90-98
    • /
    • 2002
  • In this paper, the annealing heat treatments for the best corrosion resistant of Ti(Grade 2) were studied in a 3.5% NaCl solution by electrochemical methods. The annealing heat treatments were accomplished at 650, 700 and $750^{\circ}C$ with different time of 30min., 1hour and 2 hours in a vacuum condition. The obtained results are: 1) in the case of solution heat treated $930^{\circ}C$ for 2 hours in a vacuum and air, the corrosion potentials were -348.7 and -567. 1mV, and current densities 2.32 and $22.62\mu\textrm{A}$, respectively, 2) as increase both annealing heat treatment temperature 650, 700, $750^{\circ}C$ and time 30min., 1 hour, 2 hours, the corrosion potential were decreased, whereas corrosion current density increased, 3) in the case of cyclic polarization, the measured charges were increased as increasing solution heat treatment temperature and time, 4) on the bases of corrosion potential, current density and charge, the best annealing temperature and time were measured as $700^{\circ}C$ and 30min. for Ti(Grade 2) material.

Studies on Heat Stability of Egg Albumen Gel 1. Effects of Heating Time and Temperature, PH and NaCl Concentration on Heat Stability of Egg Albumen Gel (난백겔의 열안정성에 관한 연구 1, 가열온도와 시간, pH 및 NaCl농도가 난백겔의 열안정성에 미치는 영향)

  • 유익종;김창한;한석현;송계원
    • Korean Journal of Poultry Science
    • /
    • v.17 no.2
    • /
    • pp.127-133
    • /
    • 1990
  • This study was undertaken to find out the effect of heating time and temperature, pH and NaCl concentration on the heat stability of egg albumen gel during heat treatment. With the transient decrease at 110-$130^{\circ}C$, hardness of heat-set albumen gel was increased as the heating temperature increased. The cohesiveness showed similar trend as well. The lightness was decreased while the yellowness was increased as the heating time and temperature increased. Heat-set albumen gel showed maximum hardness at pH 4.5-5.0 and pH 9.0 High heat treatment($120^{\circ}C$, 30min) showed higher hardness at alkaline range compared to low heat treatment($96^{\circ}C$, 30min.). Color of the albumen gel was relatively dark at acidic range and bright at alkaline range. High heat treatment caused darker albumen gel at alkaline range and brighter albumen gel at acidic range. The addition of NaCl increased hardness and cohesiveness of the albumen gel and improved the lightness after high heat treatment regardless of NaCl concentration.

  • PDF

δ-Ferrite Behavior of Butt Weld Zone in Clad Steel Plates Depended on Holding Time of PWHT (클래드강 맞대기 용접부의 후열처리 유지시간에 따른 델타 페라이트 거동)

  • Park, Jae-Won;Lee, Chul-Ku
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.29-36
    • /
    • 2014
  • Recently, in order to enhance the function and usefulness of products, cladding of dissimilar materials that maximizes the performance of the material is being widely used in all areas of industry as an important process. Clad steel plate, produced by cladding stainless steel plate, an anticorrosive material, on carbon steel plate, is being used to produce pressure vessels. Stainless steel plate has good corrosion resistance, and carbon steel plate has good rigidity and strength; clad steel can satisfy all of these qualities at once. This study aims to find the ${\delta}$-ferrite behavior, mechanical properties, structure change, integrity and reliability of clad steel weld on hot rolled steel plates. For this purpose, multi-layer welding, repair welding and post weld heat treatment were implemented according to welding procedure specifications (WPS). In order to observe the mechanical properties and toughness of clad steel weld zone, post weld heat treatment was carried out according to ASME Sec. VIII Div.1 UW-40 procedure for post weld heat treatment. With heat treatment at $625^{\circ}C$, the hold time was used as the process variable, increased by intervals that were doubled each time, from 80 to 1,280 min. The structure of weld part was typical cast structure; localized primary austenite areas appeared near central vermicular ferrite and fusion line. The heat affected zone showed rough austenite structure created by the weld heat input. Due to annealing effects of heat treatment, the mechanical properties (tensile strength, hardness, impact value) of the heat affected area tended to decrease. From the results of this study, it is possible to conclude the integrity of clad steel welds is not affected much in field welding, repair welding, multi-layer welding, post weld heat treatment, etc.

Effect of Heat Treatment on Properties of Tungsten Embolization Coils (텅스텐 색전코일의 특성에 미치는 열처리 효과)

  • Son, Ung-Hui;Hong, Sun-Hyeong;Sin, Gyeong-Min;Lee, Yun-Sin;Park, Jae-Hyeong
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.333-339
    • /
    • 1998
  • The effect of heat treatment conditions on the properties of tungsten(W) embolization coils has been evaluated. The W embolization coils were fabricated by coiling the primary W coil with a diameter of 30.mm on a alumina rod mandrel with a diameter of 2.92mm. The secondary coils were then heat treated at 475$^{\circ}C$and 600$^{\circ}C$ for various heat treatment time ranging from 5 minutes to 36hours. The pitch distance, diameter and shape retention capability of the W embolization coils were characterized after the heat treatment. The pitch distance of the W embolization coils increased with the heat treatment time. The diameter of W emboliazation coils decreased continuously with heat treatment time. The shape retention capability of the W embolization coils increased with the heat treatment time due to an increase in elasticity by formation of tungsten oxide film on W coil surface during the heat treatment. The heat treatment condition of W embolization Col at 600$^{\circ}C$ for 20 minute was considered desirable based on the optimization of the shape retention capability, pitch distance and secondary coil diameter after heat treatment.

  • PDF

Effect of Aging Treatment on the Mechanical Properties and Damping Capacity of 12Cr Heat Resistant Steel with Ferrite Phase (페라이트 상을 갖는 12Cr 내열강의 기계적성질 및 감쇠능에 미치는 시효처리의 영향)

  • Kang, C.Y.;Choi, H.G.;Park, H.K.;Sung, J.H.;Lee, D.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • This study was carried out to investigate the effect of aging treatment on the mechanical properties and damping capacity of 12Cr heat resistant steel with ferrite phase. While hardness values in ferrite phase was not changed, that in martensite phase was dramatically dropped in early stage of aging treatment and then gradually decreased with increase of aging time. As aging treatment was carried out, the precipitation was not detected in ferrite phase, while carbides were precipitated in martensite phase. With increasing the aging time, tensile strength eventually decreased while impact toughness increased rapidly in the early stage of aging and then gradually increased. Besides, it was confirmed that damping capacity was not changed in the early stage of aging and then gradually increased with increase of aging time.