• 제목/요약/키워드: Heat treatment methods

검색결과 903건 처리시간 0.028초

우유의 열처리가 우유품질과 영양가에 미치는 영향: II. 열처리에 의한 우유의 미생물 사멸효과 (Effects of Heat Treatment on the Nutritional Quality of Milk: II. Destruction of Microorganisms in Milk by Heat Treatment)

  • 김광현;박대은;오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제35권1호
    • /
    • pp.55-72
    • /
    • 2017
  • The second article of 'Effects of heat treatment on the nutritional quality of milk,' titled 'Destruction of microorganisms in milk by heat treatment' and authored by Dr. Seong Kwan Cha, who worked at the Korea Food Research Institute, covers the heat-stable microorganisms that exist in milk after pasteurization. The article focusses on the microbiological quality of raw milk and market milk following heat treatment, and is divided into four sub-topics: microbiological quality of raw milk, survey and measurement of microorganisms killed in raw milk, effect on psychrophilic and mesophilic microorganisms, and effect of heat treatment methods on thermoduric microorganisms. Bacillus spp. and Clostridium spp. are sporeforming gram-positive organisms commonly found in soil, vegetables, grains, and raw and pasteurized milk that can survive most food processing methods. Since spores cannot be inactivated by LTLT (low temperature long time) or HTST (high temperature short time) milk pasteurization methods, they are often responsible for food poisoning. However, UHT (ultra high temperature) processing completely kills the spores in raw milk by heating it to temperatures above $130^{\circ}C$ for a few seconds, and thus, the UHT method is popularly used for milk processing worldwide.

유한요소법을 이용한 고주파 열처리시 안내면 변형에 관한 연구 (A Study on Slide Way Deformation from High Frequency Heat Treatment by Finite Element Method)

  • 홍성오;조규재
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.57-64
    • /
    • 2002
  • Finite element program(ANSYS) estimated thermal deformation quantity in high frequency heat treatment process of a machine tool fred drive system slideway and apply deformation quantity in roughing process. Having processed the heat treatment minimizing methods of the quantity of deformation heat treatment process. Having done heat treatment with high frequency after taper processing with considering the existed heat treatment generating the quantity of deformation, existed quantity of deformation can be reduced down to 80%, consequently productivity and material saving can be achieved. When high frequency heat treatment finite element method estimated deformation quantity at difference temperature and time, it is progress at cost don and saved time.

열처리 공정의 생산스케줄 수립과 적용에 관한 연구 (A Study on Heat-Treatment Process Scheduling for Heavy Forged Products using MIP)

  • 최민철
    • 경영과학
    • /
    • 제29권2호
    • /
    • pp.143-155
    • /
    • 2012
  • The purpose of this study is to formulate and solve the scheduling problem to heat-treatment process in forging process and apply it to industries. Heat-treatment is a common process in manufacturing heavy forged products in ship engines and wind power generators. Total complete time of the schedule depends on how to group parts and assign them into heat furnace. Efficient operation of heat-treatment process increases the productivity of whole production system while scheduling the parts into heat-treatment furnace is a combinatorial problem which is known as an NP-hard problem. So the scheduling, on manufacturing site, relies on engineers' experience. To improve heat-treatment process schedule, this study formulated it into an MIP mathematical model which minimizes total complete time. Three methods were applied to example problems and the results were compared to each other. In case of small problems, optimal solutions were easily found. In case of big problems, feasible solutions were found and that feasible solutions were very close to lower bound of the solutions. ILOG OPL Studio 5.5 was used in this study.

유제품에 이용되는 주요 열처리 조건 (Heat Treatments Used in the Dairy Industry)

  • 오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제38권4호
    • /
    • pp.230-236
    • /
    • 2020
  • Heat treatment is a fundamental processing technology in the dairy industry. The main purpose of heat treatment is to destroy pathogenic and spoilage promoting microorganisms to ensure milk safety and shelf life. Despite the development of alternative technologies, such as high-pressure processing and pulse field technology for microbial destruction, heat treatment is widely used in the dairy industry and in other food processes to destroy microorganisms. Heat treatment has contributed greatly to the success of food preservation since Pasteur's early discovery that heat treatment of wine and beer could prevent their deterioration, and since the introduction of milk pasteurization in the 1890s. In Korea, food labeling standards do not stratify heat treatments into low temperature, high temperature, and ultra-high temperature methods. Most milk is produced in Korea by pasteurization, with extended shelf life (ESL : 125--140℃ / 1-10 s). Classification based on temperature (i.e. low, high, and ultra-high), is meaningless.

고온 열처리가 와이어 컷 가공면에 미치는 영향 (Effect of Heat Treatment on the Surface Machined by W-EDM)

  • 최계광;이용신
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.539-543
    • /
    • 2006
  • Experimental studies are carried out in order to investigate the effects of heat treatment on the surface machined by W-EDM. In this work, two ways of heat treatment after W-EDM are considered. As a comparison, the machined surface by a traditional method such as milling/grinding is also considered. Thereby, specimens are prepared by four different machining methods. Those are (1) milling and then grinding, (2) wire-cut electric discharge machining (W-EDM), and (3) low temperature heat treatment or (4) high temperature heat treatment after W-EDM. The resulting surface roughness are measured and the changes of surface microstructures are investigated using the scanning electron microscope (SEM) with energy dispersive X-ray spectrometer (EDS). In general, heat treatment after W-EDM result in smoother surface and better chemical composition at the machined surface. Especially, high temperature tempering could remove defects in the thermally affected zone, which cause an overall deterioration of the surface machined by W-EDM.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

주사음향현미경을 이용한 코발트기 초내열합금 미세조직에 관한 장시간 열영향에 대한 비파괴평가 (Nondestructive Evaluation for Long-term Heat Treatment Effects on Microstructure of Co-base Superalloy by Scanning Acoustic Microscope)

  • 이준희;김정석
    • 열처리공학회지
    • /
    • 제32권3호
    • /
    • pp.118-123
    • /
    • 2019
  • The aim of this study investigates the feasibility of scanning acoustic microscope (SAM) with high frequency transducer for material degradation. The test specimen was prepared by artificial heat treatment of Co-base superalloy. The high frequency 200 MHz acoustic lens was used to generate the leaky surface acoustic wave (LSAW) on the test specimens. The matrix precipitates coarsened with thermal aging time, and then grow up to several tens of micrometers. The velocity of LSAW decreased with increasing aging time. Also, it has a good correlation between LSAW and hardness. Consequently, V(z) curve methods of SAM using high frequency transducer is useful tool to evaluate the heat treatment effects on microstructure.

표면처리와 열처리가 전장도재와 지르코니아의 결합력에 미치는 영향 (Effect of surface and heat treatment on the bond strength of veneering ceramics to zirconia(Y-TZP))

  • 이정환;안재석
    • 대한치과기공학회지
    • /
    • 제35권4호
    • /
    • pp.271-280
    • /
    • 2013
  • Purpose: This study was to assess the effect of surface and heat treatment on the bond strength of veneering ceramics to zirconia. Methods: The specimens were divided into 7 groups according to surface treatment and heat treatment conditions prior to porcelain application. ten specimens from each group were subjected to a 3-point flexural test. In addition the influence of surface and heat treatment on surface roughness values and phase transformation of zirconia was evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Tukey's test. Results: Bond strength ranged from $20.67{\pm}3.13MPa$ to $32.69{\pm}4.52$. Bond strength of surface treatment group was lower than that of control group but only $Al_2O_3$ sandblasting group was significant difference. Bond strength of heat treatment group was higher than that of surface treatment group but there was no statistical significance. Conclusion: Bond strength of veneering ceramics to zirconia was affected by surface and heat treatment.

우유 단백질의 Allergenicity에 관한 연구 (A Study on the Allergenicity of Milk Protein)

  • 정은자
    • 한국식품영양학회지
    • /
    • 제8권2호
    • /
    • pp.79-87
    • /
    • 1995
  • It is generally known that the protein of talk has allergenicity and the allerenicity Induces allergic diseases. Finding methods to reduce the allergenicity of the food and develop methods to make low allergic food is the purpose of this study. For this study, 1 tried various experimental methods : heat treatment, irradation with ultraviolet and microwaves treatment with polyphosphate, enzyme hydrolysis and PCA inhibition test using guinea pigs and degrees of hydrolysis. The results obtained are as follows. Heat treatment reduced allergenicity of milk protein. The higher the heat, the better the effect. Irradiating with ultraviolet and microwave increased both the degree of protein hydrolysis and PCA inhibition reduced the allergenicity. Ultraviolet was more effective than microwaves on milk protein. Enzyme treatment increased the degree of hydrolysis and PCA inhibition, and reduced allergenicity considerably. Neutrase was more effective than alcalase on milk protein. Adding Polyphosphate did not induced protein hydrolysis, but increased PCA inhibition and reduced allergenicity.

  • PDF