Experimental study is carried out to investigate the heat transport capability and thermal resistance of sinusoidal axially grooved heat pipe, comparing its performance to trapezoidal axially grooved heat pipe. As a result from this work, the heat transport capability of sinusoidal grooved heat pipe is lower than that of trapezoidal grooved heat pipe for the same size of outer diameter. As the ratio of depth to width of sinusoidal groove heat pipe is higher, the heat transport capability of heat pipe becomes higher. It is found that Aluminum-ammonia heat pipes with sinusoidal and trapezoidal grooves have good thermal resistance, below 0.1$^{\circ}C$/W at evaporator section and below 0.05$^{\circ}C$/W at condenser section.
This study is a research on Dual Bore heat pipe to investigate the ability of heat transport ability, heat resistance and difference of heat transport ability according to the type of heat pipes. As the result of this research, we got several conclusions. Each pipe of Dual Bore in one section has a similar heat transfer capability. In the range between $-20^{\circ}C$ and $60^{\circ}C$ the heat transfer capability is double than single bore which was analyzed by menas of GAP program. Heat resistance is below $0.05^{\circ}C$/W at every point, and it tells aluminum-ammonia heat pipes are proper for satellite.
Experimental studies of the cylindrical sintered-copper wick heat pipes were carried out to investigate the capillary heat transfer characteristics. Six models of the sintered-copper wick heat pipes were manufactured and tested to evaluate the heat transport limitations and the thermal characteristics. Also the performance of the heat pipes was analyzed theoretically and compared with the test results. The heat pipe models are divided into two sintered-wick groups and the nominal particle sizes are $180{\mu}m$(wick #1) and $200{\mu}m$(wick #2) respectively The experimental results showed that, the porosity of wick #1 was higher than that of wick #2, and also the wick #1 was generally superior than the wick #2 for the heat transport capability. The maximum heat transport rates were increased as the wick thicknesses and the vapor temperatures were increased.
The north panel of a geostationary satellite is used as one of the main radiators, on which communication equipment or bus equipment are installed. The thermal control of panel is designed by using embedded heat pipes and surface heat pipes (or external heat pipes) to spread out heat dissipated from equipment all over the radiator evenly and finally to reject the heat to the space through the radiator efficiently. This panel is also divided by several areas based on the operating temperature and dissipation of equipment in order to increase heat rejection capability of radiator. The thermal analysis is carried out for the hot case, Winter Solsitce EOL (End Of Life), in order to validate thermal design of the panel utilized 6 surface heat pipes and 8 embedded heat pipes. The sensitivity studies for the heat pipe failure case and no heat pipe case are performed and compared to its normal state. The heat transport capability of heat pipe is also obtained from these calculations.
This is an experimental work concerning about an application of a heat pipe to an evacuated-glass-tube solar collector system. A methanol heat pipe with length of 0.7 m and diameter of 8 mm was manufactured and tested to compare its performance with that of freon thermosyphon which was originally used in a solar collector system fabricated at Thermomax Co.. Then this methanol heat pipe was utilized to be one component, i.e. heat transfer element, of the present experimental model of a solar collector. This model was performed the operation test as its absorber plate was irradiated by infrared lamps. The following results were obtained. (1) The methanol heat pipe was showed a stable operation when the variation of axial heat transport was $0{\sim}40$ watts and that of inclination angle was $30{\sim}90^{\circ}$. (2) The heat transport capability of the heat pipe was proved to be higher than that of the thermosyphon, because the heat transport limitation of the latter was occured at about 30 watt. (3) The heat pipe in a solar collector was also showed good performance as it transmitted absorbed energy.
The fully coupled conditional moment closure(CMC) model has been developed to realistically simulate the structure of complex turbulent nonpremixed syngas flame, in which the flame structure could be considerablyl influenced by the turbulence, transport history, and heat transfer as well. In order to correctly account for the transport effect, the CMC transport equations fully coupled with the flow and mixing fields are numerically solved. The present CMC approach has successfully demonstrated the capability to realistically predict the detailed structure and the overall combustion characteristics. The numerical results obtained in this study clearly reveal the importance of the convective and radiative heat transfer in the precise structure and NOx emission of the present confined combustor with a cooling wall.
The KN-12 spent nuclear fuel transport cask, which is a Type B(U) package designed to comply with the requirements of Korea Atomic Energy Act[1], IAEA Safety Standards Series No.TS-R-1[2] and US 10 CFR Part 71[3], is designed for carrying up to 12 PWR spent fuel assemblies in a basket structure. The cask has been licensed in accordance with Korea Atomic Energy Act and was fabricated in Korea in accordance with the requirements of ASME B&PV Sec.III, Div.3[4]. The cask must maintain thermal integrity in accordance with the related regulations and be evaluated to verify that the thermal performance of the cask complies with the regulatory requirements. The temperatures of the cask and components were determined by using finite elements methods with a numerical tool, safety tests using an 1/8 height slice model of the real cask were conducted to demonstrate verification of the numerical tool and methods, and heat transfer tests for normal transport conditions were performed as a fabrication acceptance test to demonstrate the heat transfer capability of the cask.
A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.
The purpose of this study is to develop heat transfer analysis program of heat pipe elements and design a revolving heat pipe exchanger by the performance experiment of hot air production by means of middle-temperature waste heat. Experimental variables are the revolution per minute, normal velocity of inlet air and the temperature of waste heat. The revolving heat exchanger has designed as $2^{\circ}$ in inclination angle of heat pipe bundle and as 20% in working fluid quantity and as water in working fluid. Experimental value of the total heat transfer coefficient was $20w/m^2-^{\circ}C$
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.