• Title/Summary/Keyword: Heat transfer tube

Search Result 1,309, Processing Time 0.022 seconds

Experiments on R-22 condensation heat transfer in small diameter tubes (소구경 원관내의 R-22 응축열전달에 대한 실험)

  • 김내현;조진표;김정오;김만회;윤재호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.271-281
    • /
    • 1998
  • In this study, condensation heat transfer experiments were conducted with two small diameter(ø7.5, ø4.0) tubes. Comparison with existing in-tube condensation heat transfer correlations indicated that the correlations overpredict the present data. For example, Akers correlation overpredicts the data upto 104%. The condensation heat transfer coefficient of the ø4.0 I.D. tube was smaller than that of the ø7.5 I.D tube; at the mass velocity of 300kg/$m^2$s, the difference was 12%. The pressure drop data of the small diameter tubes ware highly(two to six times) overpredicted by the Lockhart-Martinelli correlation. Subcooled forced convection heat transfer test confirmed that Gnielinski's single phase heat transfer correlation predicted the data reasonably well.

  • PDF

Cooling Heat Transfer Characteristics of CO2 in a Brazing Type Small Diameter Copper Tube (브레이징식 동세관내 CO2의 냉각 열전달 특성)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.827-834
    • /
    • 2009
  • The cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a $CO_2$ compressor, a mass flow meter, an evaporator and a brazing type small diameter tube as a test section. The mass flux of $CO_2$ is $400{\sim}1600$ [kg/$m^2s$], the mass flowrate of coolant were varied from 0.15 to 0.3 [kg/s], and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The cooling heat transfer coefficients of the brazing type small diameter copper tube is about $4{\sim}11.7%$ higher than that of the conventional type small diameter copper tube. In comparison with test results and existing correlations, correlations failed to predict the cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter copper tube. therefore, it is necessary to develope reliable and accurate predictions determining the cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter copper tube.

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.

NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER (Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석)

  • Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.149-152
    • /
    • 2007
  • The numerical simulations on the heat transfer and flow field were carried out for the improvement of the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The present geometry of the heat exchanger causes poor heat transfer since the air inside shell dose not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle.

  • PDF

Effects of Hydrophilic Surface Treatment on Condensation Heat Transfer at the Outside Wall of Horizontal Tube (수평관 외벽에서 친수성 표면처리가 응축열전달에 미치는 영향)

  • 황규대;박노성;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.533-540
    • /
    • 2000
  • Condensation heat transfer characteristics have been investigated experimentally when a water vapor is condensed on the outside of a horizontal copper tube in a condenser. This problem is of particular interest in the design of a LiBr-water absorption system. Hydrophilic surface modification was performed to increase the wettability on the copper tube. The optimum hydrophilic treatment condition using acethylene and nitrogen as reaction gas is also studied in detail. The results obtained indicate that the optimum reaction gas ratio of acethylene to nitrogen for hydrophilic surface modification was found to be 7 : 3 for the best condensation heat transfer. In the wide ranges of coolant inlet temperatures, and coolant mass flow rates, both the condensation heat transfer rate and the condensation heat transfer coefficient of a hydrophilic copper tube are increased substantially, compared with those of a conventional copper tube used in a condenser. It is also found that the condensation heat transfer enhancement by the hydrophilic surface modification still emains even after a hundred cycles of wet/dry processes.

  • PDF

Condensation heat transfer characteristics of hydrocarbon refrigerants R-290 and R-600a inside horizontal tubes (탄화수소계 냉매 R-290, R-600a의 수평관내 응축 열전달 특성에 관한 연구)

  • 박승준;박기원;노건상;정재천;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.20-25
    • /
    • 2000
  • An experimental study on the condensation heat transfer coefficients of R-22, R-290 and R-600a inside horizontal tube was performed. Heat transfer measurements were performed for smooth tube with inside diameter of 10.07 mm and outside diameter of 12.07 mm and inner grooved tube having 75 fins whose height is 0.25 mm. This study was performed for condensation temperatures were from 308 K to 323 K, and mass velocity of $51 kg/m^2s - 250kg/m^2s$. The test results showed that the local condensation heat transfer coefficients increased as the mass flux increased, and also the effect of mass flow rate on heat transfer coefficients of R-290 was less than R-22. In addition, heat transfer coefficient of R-22 increased to a larger extent than R-290 and R-600a as the mass flow rate increased. Average condensation heat transfer coefficients of natural refrigerants were superior to that of R-22. The present results had a good agreement with Cavallini-Zecchin's correlation for smooth and inner grooved tubes.

  • PDF

Characteristic of Heat and Mass Transfer on Inner Ribbed Notched Fin Tube Absorber (내면가공 핀튜브 흡수기의 열 및 물질전달특성)

  • 설원실;권오경;문춘근;정용옥;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.478-485
    • /
    • 2000
  • An experimental study of the absorption process of water vapor into lithium bromide solution was performed. For the purpose of development of high performance absorption chiller-heater utilizing Lithium Bromide solution as working fluid, the absorber is the most effective to improve the performance of an absorber because it requires the largest heat transfer area in an absorption chiller-heater system. This paper introduces bare tube and inner ribbed notched fin tube for the absorber of absorption chiller-heaters. Inner ribbed notched fin tube has about 10∼20% higher heat and mass transfer performance than bare tube conventionally used in absorbers and the it is expected to perform high heat and mass transfer. This paper will provide important information on the selection of absorber tubes in commercial absorption chill-heaters.

  • PDF

A Study on the Heat Transfer Improvement of Integral-Fin Tubes by External Fin Effect (전조 나선핀 튜브의 외부핀 형상 변화에 의한 열전달 향상에 관한 연구)

  • Han, Gyu-Il;Jo, Dong-Hyeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.33-44
    • /
    • 1994
  • This work studies for boiling and condensation heat transfer performance of trapezoidally shaped integral-fin tubes having fin densities from 748fpm to 1654fpm. For comparison, tests are made using a plain tube having the same inside and outside diameter as that of the root of fins of finned tubes. Hahne's theoretical model and Webb's theoretical model are used to predict the R-11 boiling heat transfer coefficient and condensing heat transfer coefficient respectively for plain tube and all integral-fin tubes. Experiments are carried out using R-11 as working fluid. This work is limited to film-wise condensation and pool boiling on the outside surface of plain tube and 4 low integral-fin tubes. In case of condensation, the refrigerant condenses at saturation state of 32$^{\circ}C$ on the outside tube surface cooled by coolant and in case of boiling. the refrigerant evaporates at saturation state of 1bar on the outside tube surface. The amount of non-con-densable gases in the test loop is reduced to a negligible value by repeated purging. The actual boiling and condensing processes occur on the outside tube surfaces. Hence the nature of this surface geometry affects the heat transfer performances of condenser and evaporator in refrigerating system. The condensation heat transfer coefficient of integral-fin tube is enhanced by both extended tube surface area and surface tension. The ratio of the condensation heat transfer coefficients of finned to plain tubes is greater than that of surface area of finned to plain tubes, while ratio of the boiling heat transfer coefficient of finned to plain tubes shows reverse result. As a result, low integral-fin tube can be used in condenser more effectively than used in evaporator.

  • PDF

Experimental study on two-phase flow behavior inside a vertical tube evaporator under flashing phenomenon (후래시 현상을 수반하는 수직증발관내에서의 2상유동에 관한 실험적 연구)

  • 이상용;송시홍;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.833-846
    • /
    • 1988
  • Two-phase flow heat transfer phenomena with flash evaporation inside a vertical tube were studied experimentally. Void fractions were measured using electrical probes, and the flow patterns were identified from the output voltage signal itself. The flow pattern as well as the beat transfer rates were changing along the axial distance from the tube inlet with the system pressure. As the pressure inside the tube decreases with fixed inlet temperature, the overall heat transfer coefficient through the tube wall and the boiling heat transfer coefficient inside the tube increase whereas the condensation heat transfer coefficient outside the tube decreases. The boiling heat transfer coefficient inside the tube measured by the experiments appeared to be somewhat larger than the value obtained from the Chen's correlation. Also, the flow patterns identified from present experiments are at the larger quality region of the low pattern map based on the transition criteria of Mishima and Ishii. This may be due to the non-equilibrium flashing phenomenon occurred at the nozzle exit and the tube inlet ; this also implies that the flow pattern of the two-phase flow depends strongly on the inlet conditions.

Heat Transfer Characteristics of Oval-Tube Heat Exchanger (타원관 열교환기의 열전달 특성)

  • 윤점열;이욱용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.292-301
    • /
    • 2000
  • This study experimentally investigates an air-side performance of oval tube heat exchanger against round tube heat exchanger using scaled-up model experiment for home air conditioners. A plain fin and round tube heat exchanger with 21 FPI(fins per inch) was used as a reference heat exchanger, and these were applied equally to 4 oval tube heat exchangers. Oval tube samples were designed with the same perimeter as 7.5mm diameter round tube, and their aspect ratios were 1:2, 1:3, respectively. In this study, the heat transfer and pressure drop characteristics of oval tube heat exchangers against round tube heat exchanger were also compared to one another, and an optimal samples for home air conditioners was recommended. And, general performance characteristics for an optimum oval tube samples chosen in this work was compared with round tube heat exchanger.

  • PDF