• 제목/요약/키워드: Heat transfer rate

검색결과 1,670건 처리시간 0.03초

채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구 (An Experimental study on heat transfer of a falling liquid film in air channel flow)

  • 오동은;강병하;김석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2291-2296
    • /
    • 2007
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate form the heated surface is increased as the air flow rate is increased.

  • PDF

채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer of a Falling Liquid Film in Air Channel Flow)

  • 오동은;강병하;김석현;이대영
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.335-341
    • /
    • 2008
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate from the heated surface is increased as the air flow rate is increased.

연료전지용 딤플형 이중관열교환기의 열전달 성능에 관한 연구 (A Study on the Heat Transfer Perfomance of Dimpled Double Pipe Heat Exchanger on a Fuel Cell)

  • 조동현
    • 수산해양교육연구
    • /
    • 제27권6호
    • /
    • pp.1727-1733
    • /
    • 2015
  • In the present study, the heat transfer performance of dimpled double-pipe heat exchangers for fuel cells that are utilized as cooling systems of fuel cells was studied. In addition, to comparatively analyze the heat transfer performance of dimpled double-pipe heat exchanger for fuel cells, plain double-pipe heat exchangers were also studied. Experimental results were derived on changes in the Reynolds numbers of the cooling water flowing in dimpled and plain double-pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical overall heat transfer coefficients and the experimental overall heat transfer coefficients were comparatively analyzed and the following results were derived. The heat transfer rate lost by the hot air and that of the heat transfer rate obtained by the cooling water were well balanced. The experiments of plain double-pipe heat exchangers and dimpled double-pipe heat exchangers were conducted under normal conditions and the theoretical overall heat transfer coefficient and the experimental overall heat transfer coefficient coincided well with each other. In both plain double-pipe heat exchangers and dimpled double-pipe heat exchangers, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of dimpled double-pipe heat exchangers was shown to be higher by 1.2 times than that of plain double-pipe heat exchangers.

배플 플레이트를 갖는 열교환기의 열전달 및 압력강하에 관한 연구 (A study on heat transfer characteristics and pressure drop of heat transfer by baffle cut rate)

  • 배성우;최순호;윤석훈;오철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.172-177
    • /
    • 2005
  • The object of this experiment is comparing heat transfer performance and pressure drop characteristics by baffle cut rate, fluid velocity and heating temperature. Experiments were carried out in cross flow heat exchanger with water as a working fluid. In this experiment, baffle cut rate is 30%, 40%, 50%, velocity is 0.5m/s, 1.0m/s, 1.5m/s, and heating temperature is $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$. An experimental device to measure the heat transfer coefficient was constructed. The experimental result were obtained for the fully developed turbulent flow of water in tube on the condition of uniform heat flux.

  • PDF

초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구 (The Experimental Study on Mist Cooling Heat Transfer)

  • 김영찬
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.

흡수식 냉온수기용 증발기의 전열성능에 관한 연구 (A study on the heat transfer performance of evaporator for absorption chiller)

  • 권오경;차동안;윤재호;김효상
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.192-197
    • /
    • 2008
  • The objectives of this paper are to measure the heat transfer and pressure drop of the heat transfer tube for an evaporator of absorption system applications. Five types of heat transfer tubes with different shape and heat transfer area are tested in the present experiment. Heat transfer and pressure drop performance of heat transfer tubes are measured in various operating conditions, and compared each other. The results show that the heat transfer rate of thermoexcel notch tube and low fin tube increases about 27.6% and 11.6% at the refrigerant flow rate 250 kg/h compared with that of bare tube, respectively. The thermoexcel notch tube is shown the best performance considering pressure drop and heat transfer coefficient.

  • PDF

수평관군 흡수기의 열 및 물질 전달특성에 관한 실험적 연구 (Experimental Study on Heat and Mass Transfer Characteristics in bundles of horizontal absorption tubes)

  • 설원실;정용욱;문춘근;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.113-120
    • /
    • 2000
  • On the absorber of absorption chiller/heater, LiBr solution at high concentration is sprinkled on a bundle of horizontal tube cooled by cooling water. In this case, the conditions of LiBr solution and cooling water have an influence on heat/mass transfer coefficient in this system. Therefor it is important to find optimal operation conditions of absorption chiller/heater to save energy. Heat and mass transfer coefficient increased with the increase of solution flow rate, and also heat and mass transfer rate increased but overall heat and mass transfer coefficient decreased by increasing the solution concentration within the experimental range. The superheating of the solution resulted in superior heat transfer character to a state of equilibrium from the point of heat flux and overall heat transfer coefficient.

  • PDF

FAPO 제올라이트 흡착제 코팅을 통한 핀-관 열교환기 운전조건별 열전달 성능특성 (Heat Transfer Characteristics of Fin-Tube Heat Exchanger Coated with FAPO Zeolite Adsorbent at Different Operating Conditions)

  • 정철기;김용찬;배경진;차동안;권오경
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.93-101
    • /
    • 2017
  • In conventional adsorption chamber, adsorbent is embedded in between heat exchanger fins by wire mesh. This method impedes heat and mass transfer efficiency. So in this study, to improve the heat transfer performance of heat exchanger, a fin-tube exchanger was coated with FAPO (Ferroaluminophosphate) zeolite adsorbent. The fin-tube heat exchanger has a fin pitch of 1.8 mm with a variation of adsorbent coating thickness of about 0.1 mm, 0.15 mm and 0.2 mm. By varying cooling water temperature and chilled water temperature respecively, heat transfer rate and overall heat transfer coefficient were investigated. As a result, the heat transfer rate and overall heat transfer coefficient increase with decreasing cooling water temperature and increasing chilled water temperature. Under the basic conditions, the heat transfer rate of heat exchanger with 0.2 mm coating thickness is 11% and 43% higher than that of 0.1 mm and 0.15 mm, respectively. The overall heat transfer coefficient is $189.1W/m^2{\cdot}^{\circ}C$, it is two times lager than that of 0.1 mm.

고체입자 순환유동층 열교환기의 열전달률 및 압력강하 측정 (Measurement of Heat Transfer Rates and Pressure Drops in a Solid Particle Circulating Fluidized Heat Exchanger)

  • 이금배;전용두;박상일
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.817-824
    • /
    • 2000
  • The fluidized solid particles not only increase heat transfer rates but have a cleaning function eliminating contaiminated substances caused from condensate water. An experiment was performed to measure heat transfer rates and pressure drops in a fluidized heat exchanger with circulating solid particle for constant heat transfer rate. As a results, the heat transfer rate increased by 26.9~2.6%, heat transfer coefficient by 11.9~2.7%, and pressure drop by 79.1~10.9% at the gas velocity of 6.1 ~12.1 m/s and solid particle flow rate of 100~50 kg/h with the heat exchanger of H: 50 mm, $D_p=2 in,\; and\;D_{BP}$=30 mm.

  • PDF

판형 열교환기에서 맥동유동에 의한 열전달 촉진에 관한 실험적 연구 (Heat Transfer Enhancement by Pulsating Flow in a Plate Heat Exchanger)

  • 김도규;강병하;김석현
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.199-206
    • /
    • 2004
  • The heat transfer enhancement by pulsating flow in a plate heat exchanger has been experimentally investigated in this study. The effect of the pulsating flow, such as pulsating frequency and flow rate on the heat transfer as well as pressure drop in a plate heat exchanger has been studied in detail. Reynolds number in cold side of a plate heat exchanger is varied 100∼530 while that of hot side is fixed at 620. The pulsating frequency is considered in the range of 5∼30 Hz. The results of the pulsating flow are also compared with those of steady flow. It is found that the average heat transfer rate as well as pressure drop is increased as flow rate is increased for both steady flow and pulsating flow cases. When pulsating flow is applied to the plate heat exchanger, heat transfer could be substantially increased in particular ranges of pulsating frequency or Strouhal number; St=0.36∼0.60 and pressure drop is also increased, compared with those of steady flow. However, in the region of low pulsating frequency or high pulsating frequency, heat transfer enhancement is in meager. Heat transfer enhancement map is suggested based on Strouhal number and Reynolds number of pulsating flow.