• Title/Summary/Keyword: Heat transfer limitation

Search Result 54, Processing Time 0.021 seconds

Manufacturing and Temperature Measurements of a Sodium Heat Pipe

  • Lee, Byeong-In;Lee, Seong-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1533-1540
    • /
    • 2001
  • A high-temperature sodium stainless steel heat pipe was fabricated and its performance has been investigated. The working fluid was sodium and it was sealed inside a straight tube container made of stainless steel. The amount of sodium occupied approximately 20% of the total volume of the heat pipe and its weight was 65.7gram. The length of a stainless steel container is 1002mm and its outside diameter is 25.4mm. Performance tests were carried out in a room air condition under a free convective environment and the measured temperatures are presented. The start-up behavior of the heat pipe from a frozen state was investigated for various heat input values between 600W and 1205W. In steady state, axial temperature distributions of a heat pipe were measured and its heat transfer rates were estimated in the range of vapor temperature from 50$0^{\circ}C$ to 63$0^{\circ}C$. It is found that there are small temperature differences in the vapor core along the axial direction of a sodium heat pipe for the high operating temperatures. But for the range of low operating temperatures there are large temperature drops along the vapor core region of a sodium heat pipe, because a small vapor pressure drop makes a large temperature drop. The transition temperature was reached more rapidly in the cases of high heat input rate for the sodium heat pipe.

  • PDF

A Study on the Diode Laser Surface Hardening Treatment of Cast Iron for Die Material(II) -Comparison of Hardening Characteristics by the Parts Applied Heat Treatment- (금형재료용 주철의 다이오드 레이저 표면경화처리에 관한 연구(II) - 표면경화의 적용 부위에 따른 열처리 특성의 차이 -)

  • Kim, Jong-Do;Song, Moo-Keun;Hwang, Hyun-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1048-1054
    • /
    • 2011
  • Laser surface hardening process is the method of hardening surface by inducing rapid self quenching of laser injected area through transfer of surface heat to inside after rapid heating of laser injected area only by high density energy heat source. This surface treatment method does not involve virtually any thermal deformation by heat treatment nor accompanies any other process after surface hardening treatment. In addition, allowing local machining, this method is a surface treatment method suitable for die with complicated shape. In this study, die material cast iron was surface-treated by using high power diode laser with beam profile suitable for heat treatment. Since the shapes of die differ by press die process, specimens were heat-treated separately on plane and corner depending on the applied parts. At this time, corner heat treatment was done with optic head inclined at $10^{\circ}$. As a result, corner heat treatment easily involves concentration of heat input due to limitation of heat transfer route by the shapes compared with plane part, so the treatment accomplished hardening at faster conveying speed than plane heat treatment.

Computational Simulation of Carburizing and Quenching Processes of a Low Alloy Steel Gear (저합금강 기어의 침탄 및 소입 공정에 대한 전산모사)

  • Lee, Kyung Ho;Han, Jeongho;Kim, Gyeong Su;Yun, Sang Dae;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.300-309
    • /
    • 2015
  • The aim of the present study was to predict the variations in microstructure and deformation occurring during gas carburizing and quenching processes of a SCM420H planetary gear in a real production environment using the finite element method (FEM). The motivation for the present study came from the fact that previous FEM simulations have a limitation of the application to the real heat treatment process because they were performed with material properties provided by commercial programs and heat transfer coefficients (HTC) measured from laboratory conditions. Therefore, for the present simulation, many experimentally measured material properties were employed; phase transformation kinetics, thermal expansion coefficients, heat capacity, heat conductivity and HTC. Particularly, the HTCs were obtained by converting the cooling curves measured with a STS304 gear without phase transformations using an oil bath with an agitator in a real heat treatment factory. The FEM simulation was successfully conducted using the aforementioned material properties and HTC, and then the predicted results were well verified with experimental data, such as the cooling rate, microstructure, hardness profile and distortion.

Design and evaluation of the thermal capability to secure a working time of cryogenic explosion-proof camera in LNG carrier tank

  • Kang, Geun-Il;Kwak, Si-Young;Park, Chun-Seong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.568-576
    • /
    • 2017
  • With an increase in the usage of LNG, there is a heightened interest about its safety aspects regarding the explosion of LNG carrier tank. The need for a cryogenic explosion-proof camera has increased. The camera has to work in cryogenic environment (below $-160^{\circ}C$) in LNG carrier. This study conducted design and heat transfer analysis of cryogenic camera to secure working time in limitation of heat source. The design with gap width of double pane windows was conducted based on simple vertical cavity model to insulate from cryogenic environment. The optimal gap width was 12.5 mm. For effective analysis considering convection within the camera, equivalent thermal conductivity method was adopted with ABAQUS. The working time of the camera predicted was over 10 h at warm-start condition. In cold-start condition, it required about 5 h of pre-warming time to work. The results of analysis were compared with the ones of the actual cryogenic test.

Performance Characteristics of Liquid-Cooling Heat Exchangers with MPCM Slurry Designed for Telecommunication Equipment (MPCM을 적용한 액냉형 냉각기의 성능 특성에 관한 연구)

  • Jeon, Jong-Ug;Kim, Yong-Chan;Choi, Jong-Min;Hyun, Dong-Soo;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.710-717
    • /
    • 2007
  • Electric and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers with MPCM slurries were designed and tested by varying geometry and operating conditions. The liquid-cooling heat exchangers with 4-paths showed higher cooling performance than the others. The cooling performance of liquid cooling heat exchanger with MPCM slurries was more enhanced than that of the air cooling system. It's performance was also slightly superior to that of the water cooling system at the inlet temperature of $19^{\circ}C$.

An experimental study on the effects of an inserted coil on flow patterns and heat transport performances for a horizontal rotating heat pipe (수평 회전 히트파이프에서 내부 삽입 코일이 유동 형태 및 열전달 성능에 미치는 영향에 대한 실험 연구)

  • 이진성;김철주;김선주;문석환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.763-772
    • /
    • 1998
  • The effects of an inserted coil on flow patterns and heat transport performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low RPM(less than 1,000 RPM), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing RPM. The pumping effects for RHP with an inserted coil resulted enhancement both in condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher RPM(above 1,000∼1,200) with the transition of flow regime to annular flow.

  • PDF

Optimal Shape and Boil-Off Gas Generation of Fuel Tank for LNG Fueled Tugboat

  • Kim, Jung-Woog;Jeong, Jin-yeong;Chang, Dae-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.19-25
    • /
    • 2020
  • This paper proposes the optimal shape of an LNG fuel tank with a lattice pressure vessel (LPV) design for a tugboat. The LPV is a Type C tank with a design philosophy of "design by analysis," which facilitates greater variability of shape compared with other traditional Type C tanks. Further, compared with conventional cylindrical fuel tanks, the LPV provides better volumetric efficiency. Considering the shape of a fuel tank room, a trapezoidal shape of the LPV is concluded as the most optimal design. This study performs two major analyses of the LPV: structural and heat transfer analyses. First, a design procedure of the LPV based on structural analyses is elaborated. The finite element method is used for the analyses. Furthermore, the results guarantee that the maximum stresses by applied loads do not exceed an allowable stress limitation. Second, the heat transfer analysis of the LPV is conducted. LNG boil-off gas generation is analyzed based on various insulation materials and the degree of acuum.

Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane (천연가스로부터 수소를 생산하기 위한 수증기 개질기의 작동조건과 형상에 대한 수치해석 연구)

  • Park, Joong-Uen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • The steam reformer for hydrogen production from methane is studied by a numerical method. Langmuir- Hinshelwood model is incorporated for catalytic surface reactions, and the pseudo-homogeneous model is used to take into account local equilibrium phenomena between a catalyst and bulk gas. Dominant chemical reactions are Steam Reforming (SR) reaction, Water-Gas Shift (WGS) reaction, and Direct Steam Reforming (DSR) reaction. The numerical results are validated with experimental results at the same operating conditions. Using the validated code, parametric study has been numerically performed in view of the steam reformer performance. As increasing a wall temperature, the fuel conversion increases due to the high heat transfer rate. When Steam to Carbon Ratio (SCR) increases, the concentration of carbon monoxide decreases since WGS reaction becomes more active. When increasing Gas Hourly Space Velocity (GHSV), the fuel conversion decreases due to the heat transfer limitation and the low residence time. The reactor shape effects are also investigated. The length and radius of cylindrical reactors are changed at the same catalyst volume. The longer steam reformer is, the better steam reformer performs. However, system energy efficiency decreases due to the large pressure drop.

Modelling and numerical simulation of concrete structures subject to high temperatures

  • Ostermann, Lars;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.73-88
    • /
    • 2014
  • The paper deals with a model founded on the physical processes in concrete subject to high temperatures. The model is developed in the framework of continuum damage mechanics and the theory of porous media and is demonstrated on selected structures. The model comprises balance equations for heat transfer, mass transfer of water and vapour, for linear momentum and for reaction. The balance equations are completed by constitutive equations considering the special behaviour of concrete at high temperatures. Furthermore, the limitation and decline of admissible stresses is achieved by using a composed, temperature depending crack surface with a formulation for the damage evolution. Finally, the complete coupled model is applied to several structures and to different concrete in order to determine their influence on the high-temperature-behaviour.

Analysis for Combustion Characteristics of Hybrid Rocket Motor (하이브리드 로켓의 연소특성 해석)

  • 김후중;김용모;윤명원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2002
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. The recent research efforts are focused on the improvement of volume limitation and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the eddy breakup model and Hiroyasu and Nagle and Strickland-Constable model are used for soot formation and soot oxidation. Radiative heat transfer is modeled by finite volume method. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number $\kappa-\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes in the vortex hybrid rocket engine.