• Title/Summary/Keyword: Heat stability

Search Result 1,569, Processing Time 0.025 seconds

Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability

  • Dongkeun Park;Youngim Yu;Ji-hyung Kim;Jongbin Lee;Jongmin Park;Kido Hong;Jeong-Kon Seo;Chunghun Lim;Kyung-Tai Min
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.374-386
    • /
    • 2023
  • Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.

Stability analysis of Au/YBCO film (Au/YBCO 박막의 안정성 해석)

  • 김진석;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.245-248
    • /
    • 2002
  • One dimensional conduction equation is solved by finite difference method, to analyse the stability of Au/YBCO film deposited on a sapphire substrate. Jolue heat is included in the case of current sharing state. The analysis shows the quench and recovery of superconductor depending on the amount of thermal disturbance release on the center surface of superconductor. The critical disturbance energies for different filling factor and operating current are calculated.

  • PDF

Effect on Stability of Ginseng Saponins by Various Physical and Chemical Treatments (물리화학적 처리가 인삼 Saponin의 안정성에 미치는 영향)

  • 도재호;장진규
    • Journal of Ginseng Research
    • /
    • v.10 no.2
    • /
    • pp.193-199
    • /
    • 1986
  • To investigate the stability of ginseng saponin, various physical and chemical treatments for red ginseng alcohol extract (70% ethyl alcohol) were carried out, and then the variations of ginseng saponin in extract were investigated by high performance liquid chromatography (HPLC) method. Irradiation of ${\gamma}$-ray, and ultraviolet ray, sonocatalysis by ultrasonicator, treatment of electronic range, catalytic ozonation did not or slightly affect degradation of ginseng saponins, but they were degraded by heat treatment.

  • PDF

NEW POLYIMIDES: SYNTHESIS, PROPERTIES AND POTENTIAL APPLICATION

  • Kravtsova, V.D.;Zhubanov, B.A.;Bekmagambetova, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.481-483
    • /
    • 1998
  • The problem of production of new materials based on polyheteroarylenes and other polymers combining good mechanical and dielectric properties. radiation and chemical stability with heat- and thermal stability is related with the development of efficient synthesis technique of starting low-molecular compounds. Alicyclic dianhydrides are believed to be the promising monomers to synthesize various polymers.

  • PDF

Study on the Fire Resistance of Structural Beams Made of Ordinary Structural Steel(SS 400) According to Boundary Conditions (경계조건에 따른 일반강재 적용 보부재의 내화성능 연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.167-168
    • /
    • 2014
  • Building destruction can be occurred by decreasing of structural stability and deformation according to fire. Especially, a structural behavior of beam can be shown a slightly difference by beam types. In this paper, an evaluation of the structural stability of beam made of ordinary structural steel designed by fixed and simple boundary condition was done by an analytic method using mechanical properties of SS 400 and an heat transfer theory.

  • PDF

Human $\alpha_1$-Antitrypsin Variant with Enhanced Conformational Stability at the Cost of Activity

  • Seo, Eun-Joo;Hana Im;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.39-39
    • /
    • 1997
  • Native strain of inhibitory SERPINS (Serine protease inhibitors) is thought to be used in the facile conformational switch to play biological regulation. Many heat stable variants of $\alpha$$_1$-antitrypsin, a prototype of inhibitory serpins, increased their stability by reducing the native strain.(omitted)

  • PDF

Microstructures and Tensile Properties by Multi-step Isothermal Heat Treatment in Conventional TRIP Steel (상용 TRIP강의 다단 항온 변태 열처리에 따른 미세조직 및 인장 특성)

  • Kim, Kyeong-Won;Lee, Chang-Hoon;Kang, Jun-Yun;Lee, Tae-Ho;Cho, Kyung-Mox
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.103-108
    • /
    • 2016
  • In recent years, TRIP steels which are composed of ferrite, bainite, and retained austenite have drawn much attention for automotive sheets due to excellent combination of strength and ductility. The effect of two-step isothermal heat treatment of bainitic transformation on microstructures, especially retained austenites and tensile properties in the conventional TRIP steel was investigated. A two-step isothermal heat treatment, in which 50% bainitic transformation occurred at high temperature, followed by bainitic transformation at low temperature, improves tensile properties, resulting from enhanced mechanical stability of retained austenite against external plastic deformation due to refinement of retained austenites, compared to single-step isothermal heat treatment.

Shape Optimization of a Plate-Fin Type Heat Sink with Triangular-Shaped Vortex Generator

  • Park, Kyoungwoo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1590-1603
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for the thermal stability is performed numerically. The optimum solutions in the heat sink are obtained when the temperature rise and the pressure drop are minimized simultaneously. Thermal performance of heat sink is influenced by the heat sink shape such as the base-part fin width, lower-part fin width, and basement thickness. To acquire the optimal design variables automatically, CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used for the constrained nonlinear optimization problem. The results show that the optimal design variables are as follows; B$_1$=2.584 mm, B$_2$=1.741 mm, and t=7.914 mm when the temperature rise is less than 40 K. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The relationship between the pressure drop and the temperature rise is also presented to select the heat sink shape for the designers.

The Study of Heat Resistant Aluminum Alloy with CrW Homogeneous Solid Solution (CrW 전율고용체 첨가 내열 알루미늄 합금에 관한 연구)

  • Kim, Jin-Pyeong;Sung, Si-Young;Han, Beom-Suck;Kim, Sang-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.122-126
    • /
    • 2013
  • Recently, heat-resistant aluminum alloy has been re-focused as a downsizing materials for the internal combustion engines. Heat-resistant Al alloy development and many researches are still ongoing for the purpose of improving thermal stability, high-temperature mechanical strength and fatigue properties. The conventional principle of heat-resistant Al alloy is the precipitation of intermetallic compounds by adding a variety of elements is generally used to improve the mechanical properties of Al alloys. Heat resistant aluminum alloys have been produced by CrW homogeneous solid solution to overcome the limit of conventional heat resistant aluminum alloy. From EPMA, it is found that CrW homogeneous soild solution phases with the size of $50-100{\mu}m$ have been dispersed uniformly, and there is no reaction between aluminum and CrW alloy. In addition, after maintaining at high temperature of 573 K, there is no growth of hardening phase, nor desolved, but CrW still exists as a homogeneous solid solution.