• Title/Summary/Keyword: Heat source or sink

Search Result 33, Processing Time 0.019 seconds

Experimental Simulation of Local External Forcing of the Contained Rotating Flow (회전반 유체실험에서 국지적 외력의 실험적 모의)

  • Yi, Chang-Won;Na, Jung-Yul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.77-85
    • /
    • 2000
  • Simulation of local external forcing and its response in the rotation table experiment has been investigated. Spatially-uniform external forcings have been applied in many experimental studies, however, based on the fact that the north-south distribution of the wind-stress curl and the existence of local maximum of the sea surface heat loss in the northern part of the East Sea, new method of combined effects of local forcings has been employed in separate experiments. Carefully designed local source or sink at the bottom of the cylindrical container can produce horizontal pressure gradient within the Ekman layer, and consequently the interior also attains the same pressure gradient that produces geostrophic interior circulation. In order to keep free surface during the local-surface cooling, a side-wall cooling method is suggested. For the various type of local forcing including the effects local cooling and the periodic change of local wind-stress curl, western-boundary flow in terms of its strength, position of separation from the boundary have been observed.

  • PDF

Chloride Penetration into Concrete in Tidal Zone by Diffusion-Convection Analysis (확산과 이송을 고려한 콘크리트의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jung, Hyung-Mok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.607-615
    • /
    • 2009
  • Analysis of chloride penetration into concrete is performed considering the repeated wetting and drying conditions of tidal zone, by means of the developed finite element program which enables the diffusion-convection analysis to be conducted. Heat conduction and moisture diffusion are also included in the finite element analysis program in order that their effects to chloride penetration may be considered. For the efficiency of calculation, the analyses of temperature, relative humidity and free chloride concentration are conducted successively in that order, by treating the convection of chloride due to moisture diffusion as an source or sink term. By comparing the analysis result from finite element analysis, where main variable is a wetting and drying period, with the chloride profiles from ACI Life-365 method, it is shown that the Life-365 method gives an accurate result for the submerged zone but does not consider the differences of wetting and drying period. To obtain an accurate chloride profile in the tidal zone, it is confirmed that the diffusion-convection finite element analysis should be applied.

On Securing Continuity of Long-Term Observational Eddy Flux Data: Field Intercomparison between Open- and Enclosed-Path Gas Analyzers (장기 관측 에디 플럭스 자료의 연속성 확보에 대하여: 개회로 및 봉폐회로 기체분석기의 야외 상호 비교)

  • Kang, Minseok;Kim, Joon;Yang, Hyunyoung;Lim, Jong-Hwan;Chun, Jung-Hwa;Moon, Minkyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.135-145
    • /
    • 2019
  • Analysis of a long cycle or a trend of time series data based on a long-term observation would require comparability between data observed in the past and the present. In the present study, we proposed an approach to ensure the compatibility among the instruments used for the long-term observation, which would allow to secure continuity of the data. An open-path gas analyzer (Model LI-7500, LI-COR, Inc., USA) has been used for eddy covariance flux measurement in the Gwangneung deciduous forest for more than 10 years. The open-path gas analyzer was replaced by an enclosed-path gas analyzer (Model EC155, Campbell Scientific, Inc., USA) in July 2015. Before completely replacing the gas analyzer, the carbon dioxide ($CO_2$) and latent heat fluxes were collected using both gas analyzers simultaneously during a five-month period from August to December in 2015. It was found that the $CO_2$ fluxes were not significantly different between the gas analyzers under the condition that the daily mean temperature was higher than $0^{\circ}C$. However, the $CO_2$ flux measured by the open-path gas analyzer was negatively biased (from positive sign, i.e., carbon source, to 0 or negative sign, i.e., carbon neutral or sink) due to the instrument surface heating under the condition that the daily mean temperature was lower than $0^{\circ}C$. Despite applying the frequency response correction associated with tube attenuation of water vapor, the latent heat flux measured by the enclosed-path gas analyzer was on average 9% smaller than that measured by the open-path gas analyzer, which resulted in >20% difference of the sums over the study period. These results indicated that application of the additional air density correction would be needed due to the instrument heat and analysis of the long-term observational flux data would be facilitated by understanding the underestimation tendency of latent heat flux measurements by an enclosed-path gas analyzer.