• 제목/요약/키워드: Heat source model

검색결과 422건 처리시간 0.037초

크?피드 연삭에서 열원 모델에 관한 연구 (A Study on Heat Source Model to Creep Feed Grinding)

  • 정종달;정해도;최헌종;김남경
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.171-176
    • /
    • 2001
  • This study focuses on the energy partition and heat flux distribution in creep-feed grinding. From the measurements of transient grinding temperature in the workpiece which the thermocouple was embedded, the overall energy partition to the workpiece was estimated with moving heat source theory using the developed scalene triangle heat model. The energy partition was calculated as 3.75% in down grinding smaller than 5.3% in up grinding. Also, the scalene triangle heat model was confirmed as the most optional heat model in correspond to the experimental data. Then, the heat flux distribution was calculated from temperature responses. The heat flux is negative behind the grinding zone where fluid was applied. In this experimental result, the total heat flow to the workpiece per unit width obtained by integrating the positive heat flux was 0,7W/mm for down grinding.

  • PDF

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (2) (A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building)

  • 오오카 료죠;황석호;세키네 켄타로;시마와키 요스케;남유진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.155-160
    • /
    • 2005
  • To purpose of this research is to develop the numerical model for simulating performance of ground heat exchanger with high prediction accuracy. This paper describes the development of a numerical model that simulates the heat transfer between ground and circulation water in ground heat exchanger. Furthermore, we propose the estimating technique of soil properties, such as thermal conductivity, heat capacity and hydraulic conductivity, based on ground investigation. Comparison between experiment and numerical analysis based on the model developed above was conducted under the condition of the experiment in 2004. The result of analysis agreed well with the experimental result.

  • PDF

유한요소해석을 이용한 Channel I butt SA 용접부 변형 해석에 관한 연구 (A Study on Welding Distortion of Channel I Butt SA Weld using FE Analysis)

  • 신대희;신상범;이주성
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.189-192
    • /
    • 2006
  • The purpose of this study is to evaluate the welding distortion at the channel I butt SA weldment. In order to do it, the heat input model for the weldment was defined as combined heat source with the surface heat flux of gaussian mode and volume heat source uniformly distributed within weld groove on the basis of comparing the shapes of molten pool and temperature distribution obtained by FEA and experiment. The arc efficiency of SA welding for 2 dimensional FE analysis was determined as 0.85. The results of welding distortions at the weldment obtained by FEA and heat input conditions proposed have a good agreement with those obtained by experiment. Based on the results, it was suggested that the proper heat input model should be required to evaluate the welding distortion for weldment.

  • PDF

공기열원 히트펌프를 위한 공기식 지중 열교환기(GAHX) 설계 및 분석 연구 (Ground Air Heat Exchanger Design and Analysis for Air Source Heat Pump)

  • 이광섭;류남진;강은철;이의준
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2016
  • A ground air heat exchanger (GAHX), also called earth air heat exchanger is a useful technology to be integrated with other renewable energy technologies. In this study, ground-air heat exchanger system for the air source heat pump is introduced. The purpose of this study is to design the volumetric flow rate and the length of GAHX system. A GAHX length model equation has been developed and used for calculation. GAHX thermal efficiency are recommended as 75% and 85% in order to optimize pipe length. $2,750m^3/h$, $2,420m^3/h$ of volumetric flow rate on 88.3m, 111.7m length are suggested for providing 7.5kW thermal capacity. And the number of path is recommended more than two to minimize pressure drop. For future study, advanced model equation study with ground thermal behavior and a more efficient GAHX design will be considered.

비선형 열원모델을 이용한 Rijke tube 내열음향 불안정 곡선의 수치예측기법 (Numerical Prediction of Thermoacoustic Instability in Rijke Tube Using Non-linear Model for Heat Source)

  • 송우석;이승배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2524-2529
    • /
    • 2008
  • The thermal system like a combustion chamber is believed to experience a significant instability problem with vibration in case that the thermal energy or the acoustic energy are transformed into a different form through a relevant path. This study deals with a numerically- predicted, Thermoacoustic instability in a Rijke tube by using a non-linear model for a heat source. The heating part where the energy transformation occurs actively is modeled after simulating two-dimensional cylinder case with constant surface temperature, and a nonlinear model that accounts for the transfer function of magnitude- and phase-characteristics is properly implemented so as to be dependent on the pulsation strength in the tube. The heat source model is observed to result in equivalent Thermoacoustic instabilities in the Rijke tube except low flow-rate cases in which the natural convection is dominant.

  • PDF

레이저 키홀 용접의 열원 모델링: Part 2-간극과 두께 차이의 영향 (Heat Source Modeling of Laser ]Keyhole Welding: Part 2-Effects of Cap and Thickness Difference)

  • 이재영;이원범;유중돈
    • Journal of Welding and Joining
    • /
    • 제23권1호
    • /
    • pp.55-60
    • /
    • 2005
  • A three-dimensional Gaussian heat source model is modified to include the effects of the gap and thickness-difference for the laser keyhole welding. The gap of the butt joint influences the welding efficiency such that the melting area decreases linearly with the gap. When the different plate thickness is used such as the tailored blank welding, melting areas of the thick and thin plates are predicted by introducing the thickness-difference factor. The calculated results using the modified heat source show reasonably good agreements with the experimental results.

대학시설에 대한 열원기기 대수 운전 제어의 에너지 절약 효과 (The energy-saving effect by controlling the number of operating chillers in university facility)

  • 이제헌;야스노리아카시;금종수;김동규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1043-1048
    • /
    • 2009
  • This paper proposes the new operation control method that let heat source system stop and circulate only hot water at low load, and verified the introduction effect. At first, we constructed simulation model of heat source system and examined the proposing method by using simulation model. At last, we examined the introduction effect of proposing method with actual building. As a result, the primary energy consumption of heat source system was reduced by about 13%.

  • PDF

해수 열원 및 폐열 이용 고성능 열펌프 시스템 모사 (Simulation for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy)

  • 최광일;오종택;오후규
    • 설비공학논문집
    • /
    • 제15권1호
    • /
    • pp.59-66
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics (COP) of the heat pump system for various operating conditions with the use of seawater heat source and exhaust energy. To accomplish the goal, first of all, the computer simulation for heat pump system is carried out. The heat pump system model is made of a waste heat recovery system and a vapor compression refrigeration system, and the working fluid is R-22. The model calculated the change of COP with the variation of temperature and flow rate. The COP and the plate heat exchanger (PHE) area of the heat pump system are considered moderately high in the condensation temperature of $25^{\circ}^C$ and the evaporation temperature of $2^{\circ}^C$ in indoor culture system. The simulation results will be used effectively for the design and the performance prediction of heat pump system using unused energy in a land base aquaculture system.

미세 레이저 용접에서 용융부 형상예측을 위한 열원의 방정식에 관한 연구 (a Study on Heat Source Equations for the Prediction of Weld Shape in Laser Micro-welding)

  • 장원석;나석주
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.76-81
    • /
    • 2000
  • In this research, various heat source equations that have been proposed in previous study were calculated and compared with new model in various laser parameters. This is to treat the problem of predicting, by numerical analysis, the thermo-mechanical behaviors of laser spot welding for thin stainless steel plates. A finite element code, ABAQUS is used for the heat transfer analysis with a three-dimensional plane assumption. Experimental studies if the laser spot welding have also bee conducted to validate the numerical models presented. The results suggest that temperature profiles and weld dimensions are varied according to the heat source of the laser beam. For this reason, it is essential to incorporate an accurate description of the heat source.

  • PDF