• Title/Summary/Keyword: Heat shock protein genes

Search Result 139, Processing Time 0.024 seconds

Selection of (Ac/Ds) insertion mutant lines by abiotic stress and analysis of gene expression pattern of rice (Oryza sativar L.) (비생물학적 스트레스 관련 벼 Ac/Ds 삽입 변이체의 선발 및 유전자 발현 분석)

  • Jung, Yu-Jin;Park, Seul-Ah;Ahn, Byung-Ohg;Yun, Doh-Won;Ji, Hyeon-So;Lee, Gang-Sup;Park, Young-Whan;Suh, Seok-Cheol;Baek, Hyung-Jin;Lee, Myung-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.307-316
    • /
    • 2008
  • Transposon-mediated insertional mutagenesis is one of powerful strategy for assessing functions of genes in higher plants. In this report, we have selected highly susceptible and tolerance plant by screening about high salt (3% NaCl) and cold stresses ($4^{\circ}C$) from F2 seeds of 30,000 Ac/Ds insertional mutagenesis lines in rice (Oryza sativa L. cv. Dongjin). In order to identify the gene tagging, insertion of Ds element was analyzed by Southern blot and these results revealed that 19 lines were matched genotype of selected lines with phenotype from the first selected 212 lines, and 13 lines have one copy of Ds elements. The Franking Sequence Tags (FSTs) of selected mutant lines showed high similarities with the following known function genes: signal transduction and regulation of gene expression (transpoter, protease family protein and apical meristem family protein), osmotic stress response (heat shock protein, O-methyltransferase, glyceraldehyde-3-phosphate dehydrogenase and drought stress induce protein), vesicle trafficking (SYP 5 family protein) and senescence associated protein. The expression pattern of 19 genes were analyzed using RT-PCR under the abiotic stresses of 9 class; 250mM NaCl, osmotic, drought, 3% $H_2O_2$, $100{\mu}M$ ABA, $100{\mu}M$ IAA, 0.1 ppm 2,4-D, $4^{\circ}C$ cold and $38^{\circ}C$ high temperature. Isolated knock-out genes showed the positive response about 250 mM NaCl, drought, $H_2O_2$, PEG, IAA, 2,4-D, ABA treatment and low ($4^{\circ}C$) and high temperature ($38^{\circ}C$). The results from this study indicate that function of selected knock-out genes could be useful in improving of tolerance to abiotic stresses as an important transcriptional activators in rice.

Salicylic Acid and Wounding Induce Defense-Related Proteins in Chinese Cabbage

  • Kim, Hong-Nam;Cha, Jae-Soon;Cho, Tae-Ju;Kim, Hak-Yong
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.213-219
    • /
    • 2003
  • The response of plants to pathogens and wounding is dependent upon very sensitive perception mechanisms. Although genetic approaches have revealed a variety of resistance genes that activate common defense responses, defense-related proteins are not well characterized in plants. Therefore, we used a proteomic approach to determine which defense-related proteins are induced by salicylic acid (SA) and wounding in Chinese cabbage. We found that SA and wounding induce pathogenesis-related protein 1a (PR1a) at both protein and mRNA levels using proteomics and Northern blot analysis, respectively. This indicates that our proteomic approach is useful for identifying defense-related proteins. We also identified several other proteins that are induced by SA or wounding. Among the seven SA-induced proteins identified, four may be defense-related, including defense-related protein, phospholipase D (PLD), resistance protein RPS2 homolog, and L-ascorbate peroxidase. Out of the six wounding-induced proteins identified, three may be defense-related: heat shock cognate protein 70 (HSC70), polygalacturonase, and peroxidase P7. The precise functions of these proteins in plant defense responses await further study. However, identification of the defense-related proteins described in this study should allow us to better understand the mechanisms and signal transduction pathways involved in defense responses in Chinese cabbage.

Differential Gene Expression in a Red Alga Gracilaria textorii(Suringar) Hariot (Gracilariales, Florideophyceae) between Natural Populations

  • Woo, Seon-Ock;Ko, Young-Wook;Oh, Yoon-Sik;Kim, Jeong -Ha;Lee, Taek-Kyun;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.199-204
    • /
    • 2008
  • The bio-molecules involved in defense mechanisms can be used as efficient biomarkers for physiological changes in organisms caused by both of internal and external stress. Thus, the expression level of genes which encoding such molecules serve as critical 'early warning system' for environmental assessment as well as health diagnosis of biological organisms. In this study, Cytochrome P450, Heat shock protein 90, Ubiquitin and ${\beta}$-actin gene were isolated for the first time from a red alga Gracilaria textorii. The quantitative differential gene expression analyses of three genes, GteCYP1A, GteHsp90 and Gte-UB, were carried out in G. textorii sporophytes collected from two different localities, polluted Sujeong (Masan, Korea) and potentially unpolluted Danggeum (Daemaemuldo Is., Korea). The transcripts of all three tested genes were highly expressed in the Sujeong population. The results suggest: 1) the Sujeong site was more polluted than the Danggeum site; 2) G. textorii could be applicable to marine environment monitoring in coastal regions.

Effect of Carthami Tinctorii Fructus Herbal-acupuncture Solution(CTF-HAS) on Gene Expression in HepG2 carcinomar cells by Proteomic Analysis (Proteomic Analysis기법을 이용한 홍화자약침액(紅花子藥鍼液)이 간암세포주(肝巖細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響))

  • Lee, Kyung-Min;Lim, Seong-Chul;Jeong, Tae-Young;Seo, Jung-Chul;Han, Sang-Won
    • Journal of Pharmacopuncture
    • /
    • v.8 no.2
    • /
    • pp.23-28
    • /
    • 2005
  • Objective : It has long been known about the osteogenic effect of CTF-HAS on bone tissues. However, it has not been determined the effect of CTF-HAS on cancer cells. The purpose of this study is to screen the CTF-HAS mediated differentially expressed genes in cancer cells such as HepG2 hepatoma cells lines. Methods : CTF-HAS was prepared by boiling and stored at $-70^{\circ}C$ until use. For proteomic analysis, total protein was analyzed by 2D gel electrophoresis and Q-TOF mass spectrometer. Results : In proteomic analysis, three spots were identified by 2D-gel electrophoresis and Q-TOF analysis. One down-regulated protein was heat shock 70kDa protein 5 and up-regulated proteins were chaperonin and 2-phospho -pyruvate-hydratase ${\alpha}-enolase$ by 1.5mg/ml of CTF-HAS. Discussion : Proteomic analysis approach were performed to screen the differential expression genes. The screened genes will be used for the better understanding in therapeutic effect of CTF-HAS on cancer field.

Analysis of Expressed Sequence Tags from the Embryogenic Callus of Korean Ginseng (Panax ginseng C.A. Meyer)

  • In, Jun-Gyo;Lee, Bum-Soo;Park, Yong-Eui;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.123-123
    • /
    • 2003
  • In order to study gene expression transcribted during the embryo development, we constructed a cDNA library of embryogenic callus induced from cotylendon of Korean ginseng and generated expressed sequence tags (ESTs) of 3,359 clones randomly selected. The ESTs could be clustered into 1,910 (59.1%) non-redundant groups. Similarity search of the non-redundant ESTs against public non-redundant databases of both protein and DNA indicated that 2,217 groups show similarity to genes of known function. These ESTs clones were divided into eighteen categories depending upon gene function. Most abundant transcripts were ribosomal protein small subunit 28kDa(40), tumor-related protein(35), metallothionein (31), small heat-shock protein class 18.6K(24), and cyclophilin(20). There are no useful informations of gene expression during the embryo development in Korean ginseng. These results could help to understand the embryo development in Korean ginseng.

  • PDF

Changes of Gene Expression in NIH3T3 Cells Exposed to Osmotic and Oxidative Stresses

  • Lee, Jae-Seon;Jung, Ji-Hun;Kim, Tae-Hyung;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2004
  • Cells consistently face stressful conditions, which cause them to modulate a variety of intracellular processes and adapt to these environmental changes via regulation of gene expression. Hyperosmotic and oxidative stresses are significant stressors that induce cellular damage, and finally cell death. In this study, oligonucleotide microarrays were employed to investigate mRNA level changes in cells exposed to hyperosmotic or oxidative conditions. In addition, since heat shock protein 70 (HSP70) is one of the most inducible stress proteins and plays pivotal role to protect cells against stressful condition, we performed microarray analysis in HSP70-overexpressing cells to identify the genes expressed in a HSP70-dependent manner. Under hyperosmotic or oxidative stress conditions, a variety of genes showed altered expression. Down­regulation of protein phosphatase1 beta (PP1 beta) and sphingosine-1-phosphate phosphatase 1 (SPPase1) was detected in both stress conditions. Microarray analysis of HSP70-overexpressing cells demonstrated that diverse mRNA species depend on the level of cellular HSP70. Genes encoding Iysyl oxidase, thrombospondin 1, and procollagen displayed altered expression in all tested conditions. The results of this study will be useful to construct networks of stress response genes.

Community-acquired Extended-spectrum and Plasmid-mediated ampC Beta-lactamase-producing Multidrug-resistant Enterobacter cloacae Septicaemia in a Cat with Euthyroid Sick Syndrome (정상 갑상샘 질환 증후군 고양이의 지역사회획득 광범위 및 플라스미드 유래 ampC beta-lactamase 양성 다약제내성 Enterobacter cloacae 패혈증)

  • Han, Jae-Ik;Na, Ki-Jeong
    • Journal of Veterinary Clinics
    • /
    • v.32 no.2
    • /
    • pp.191-195
    • /
    • 2015
  • A 7-year-old castrated male Korean Shorthair cat was referred with lethargy and anorexia. Laboratory examination revealed moderate degenerative changes of peripheral neutrophils on blood smear examination and decreased levels of free and total thyroxine ($T_4$) as well as bacterial growth on blood culture. Molecular analyses of the 16S ribosomal RNA gene and heat shock protein 60 gene confirmed the bacterium as Enterobacter cloacae. A minimal inhibitory concentration test showed multidrug resistance of the bacterium against 16 antibiotics. Polymerase chain reaction (PCR) and subsequent sequencing specifically for $bla_{TEM}$, $bla_{SHV}$, $bla_{CTX-M}$, and plasmid-mediated ampC genes revealed positive results to $bla_{TEM-1}$, $bla_{CTX-M-15}$, and plasmid-mediated $bla_{ACT-1}$ genes, indicating that the isolated bacterium contains plasmids containing genes encoding extended-spectrum beta-lactamase and plasmid-mediated ampC beta-lactamase. After 1 month of treatment with antibiotics and levothyroxine, the cat's condition improved; both the thyroid function test and the blood culture showed no abnormalities. This is the first report of community-acquired multidrug-resistant E. cloacae-induced euthyroid sick syndrome in a cat. By the prompt diagnostic procedures and properly selected antibiotic therapy, the cat was recovered from the multidrug-resistant bacterium-induced septicaemia.

Effects of Cadmium on the Gene Expression Profile in the Rat Basal Ganglia (카드뮴이 흰쥐 뇌기저핵의 유전자 발현에 미치는 영향)

  • Lee, Chae-Kwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.29-40
    • /
    • 2010
  • This study was aimed at investigating the gene expression profile in basal ganglia of cadmium exposed rat based on cDNA array analysis. For cDNA array analysis, adult Sprague-Dawley male rats (350 ${\pm}$ 25 g) were intraperitoneally injected with 2.0 mg/kg body weight/day of CdCl2 (0.3 ml) for 5 days. For doserelated gene expression analysis rats were intraperitoneally injected with 0.0, 0.1, 0.3, 1.0 mg/kg body weight/day of CdCl$_2$ for 5 days. Control rats were injected with equal volume of saline. Cadmium concentration of brain was analyzed by atomic absorption spectrophotometer. For cDNA array, RNA samples were extracted from basal ganglia and reverse-transcribed in the presence of [${\alpha}$32P]-dATP. Membrane sets of the Atlas Rat 1.2 array II and Toxicology array 1.2 (Clontech, Palo Alto, CA) were hybridized with cDNA probe sets. RT-PCR was employed to validate the relative gene expression patterns obtained from the cDNA array. Northern blot hybridization methods were employed to assess the dose-related gene expression. Among the 2352 cDNAs, 671 genes were detected in both array sets and 63 genes of 38 classes showed significant (more than two fold) changes in expression. Thirty five of these genes were up-regulated and twenty eight were down-regulated in the cadmium exposed group. According to the dose-related gene expression analysis, heat shock 27 kDa protein (HSP27), neurodegeneration-associated protein 1 (Neurodap 1) genes were significantly up-regulated and melatonin receptor 1a (Mel1a), Kinesin family member 3C (KIF3C), novel kinesinrelated protein (KIF1D) genes were significantly downregulated even in the low-dose of cadmium exposed group (0.1 mg/kg body weight/day). Conclusions Sixty three genes detected in this study can give some more useful informations about the cadmium-induced neurotoxicity in the basal ganglia. As well as, HSP27, Neurodap1, Mel1a, KIF3C and KIF1D genes may be useful for the study of the cadmium-induced neurotoxicity because these genes showed dramatic changes of mRNA levels in response to the low dose of cadmium exposure.

A chaperone surveillance system in plant circadian rhythms

  • Cha, Joon-Yung;Khaleda, Laila;Park, Hee Jin;Kim, Woe-Yeon
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.235-236
    • /
    • 2017
  • The circadian clock is an internal system that is synchronized by external stimuli, such as light and temperature, and influences various physiological and developmental processes in living organisms. In the model plant Arabidopsis, transcriptional, translational and post-translational processes are interlocked by feedback loops among morning- and evening-phased genes. In a post-translational loop, plant-specific single-gene encoded GIGANTEA (GI) stabilize the F-box protein ZEITLUPE (ZTL), driving the targeted-proteasomal degradation of TIMING OF CAB EXPRESSION 1 (TOC1) and PSEUDO-RESPONSE REGULATOR 5 (PRR5). Inherent to this, we demonstrate the novel biochemical function of GI as a chaperone and/or co-chaperone of Heat-Shock Protein 90 (HSP90). GI prevents ZTL degradation as a chaperone and facilitates ZTL maturation together with HSP90/HSP70, enhancing ZTL activity in vitro and in planta. GI is known to be involved in a wide range of physiology and development as well as abiotic stress responses in plants, but it could also interact with diverse client proteins to increase protein maturation. Our results provide evidence that GI helps proteostasis of ZTL by acting as a chaperone and a co-chaperone of HSP90 for proper functioning of the Arabidopsis circadian clock.

Transduced HSP27 protein protects neuronal cell death by enhancing FALS-associated SOD1 mutant activity

  • An, Jae-Jin;Lee, Yeom-Pyo;Kim, Dae-Won;Sohn, Eun-Joung;Jeong, Hoon-Jae;Kang, Hye-Won;Shin, Min-Jae;Kim, Mi-Jin;Ahn, Eun-Hee;Jang, Sang-Ho;Kang, Jung-Hoon;Kang, Tae-Cheon;Won, Moo-Ho;Kwon, Oh-Shin;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.136-141
    • /
    • 2009
  • Familial Amyotrophic lateral sclerosis (FALS) is a progressive neurodegenetative disorder induced by mutations of the SOD1 gene. Heat shock protein 27 (HSP27) is well-defined as a stress-inducible protein, however the its role in ALS protection has not yet been established. To investigate the role HSP27 may have in SOD1 mutant-mediated apoptosis, human SOD1 or HSP27 genes were fused with a PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame fusion protein, which was then transduced into cells. We found the purified PEP-1-HSP27 fusion proteins can be transduced efficiently into neuronal cells and protect against cell death by enhancing mutant SOD1 activity. Moreover, transduced PEP-1-HSP27 efficiently prevents protein aggregation produced by oxidative stress. These results suggest that transduced HSP27 fusion protein may be explored as a potential therapeutic agent for FALS patients.