• Title/Summary/Keyword: Heat room

Search Result 1,149, Processing Time 0.024 seconds

Cooling Energy Saving System using Solar Heat Protection Dvices (일사차단용 설비를 이용한 냉방 에너지 절약 방안)

  • Jeong, Ky-Bum;Choi, Sang-Gon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.108-115
    • /
    • 2010
  • Global warming and heat island make the outdoor air temperature ascend. Tall office buildings are covered with glass window facades as a design aspect and the portion of window area to facade area is increasing. Hence, cooling load for solar radiation passing through glass window is rising. Cooling air to a certain room is supplied equally despite the face of the room in most office buildings. Especially, the west part of the office cannot maintain the required temperature that occupant needs because of the solar heat coming through windows.?In this study, we projected the water spray system to reduce the solar heat transfer and to reflect the solar ray through windows. We perform the experiments to evaluate the performance of the solar heat protection devices. We measured the room temperature of two separated office rooms for solar heat control devices. The investigation's results show that the water spray system is sufficient to the coated glass and the venetian blinds for the decrease of the solar heat inflow.

Fabrication of Hydroxyapatite-coated Zirconia by Room Temperature Spray Process and Microstructural Change by Heat-treatment (상온 분사법에 의한 수산화아파타이트 코팅 지르코니아의 제조 및 미세구조에 미치는 열처리 효과)

  • Lee, Jong Kook;Eum, Sangcheol;Kim, Jaehong;Jang, Woo Yang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Hydroxyapatite coatings were fabricated by a room temperature spray method on zirconia substrates and the influence of heat-treatment on their microstructure was also investigated. Phase composition of coated hydroxyapatite films was similar to the starting powder, but the grain size of hydroxyapatite particles was reduced to the size of nano-scale about 100 nm. Grain size, particle compactness, and adhesiveness to zirconia of hydroxyapatite coatings were increased with heat-treatment temperature, but some of cracks by heat-treatment above $1100^{\circ}C$ were initiated between hydroxyapatite coatings and zirconia substrate. Heat-treated hydroxyapatite layers show the dissolution in SBF solution for 5 days. Hydroxyapatite-coated specimen heat-treated at $1100^{\circ}C$ for 1 h has a good biocompatibility, which specimen induced the nanocrystalline hydroxyapatite precipitates on the coating surface by the immersion in SBF solution for 5 days.

A Study on Optimal Control of Slab Cooling Storage Considering Stochastic Properties of Internal Heat Generation (내부발열의 확률적 성상을 고려한 슬래브축냉의 최적제어)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.313-320
    • /
    • 2015
  • In this paper, a method to obtain the probability distribution of room temperature and cooling load is presented, when the internal heat generation is applied to the system as a disturbance in the air conditioning system with slab cooling storage. The probability distribution of room temperature and the cooling load due to the disturbance were examined in one room of an office building. When considering only the electric power consumption as a probability component, it was found that the effect on room temperature and cooling load is small, because the probability component of the measured electric power consumption in the building is small. On the other hand, when considering the stochastic fluctuations of electric power consumption together with the heat generated by human bodies, the mean value of the cooling load was about 2,300 W and the ratio of the standard deviations was 19% (10 o'clock in second day). It was revealed that the stochastic effects of internal heat generation acting on the air conditioning system with slab cooling storage are not small.

An Experiment on Performance Evaluation of Energy Consumption of an Exhaust Air Heat Recovery Type Air Washer for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 배기 열회수식 에어와셔의 에너지 소비량 성능평가 실험)

  • Song, Gen-Soo;Yoo, Kyung-Hoon;Shin, Dae-Kun;Son, Seung-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.844-849
    • /
    • 2008
  • In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as $NH_3$, SOx and organic gases from outdoor air introduced into clean room. Meanwhile, there is a large quantity of exhaust air from clean room. From the energy saving point of view, heat recovery is useful for the reduction of air conditioning energy consumption for clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. However, so far there have not been sufficient studies of analyzing the comparison of the amounts of energy consumption and saving. In the present study, an experiment was conducted to investigate the energy consumption and heat recovery of a fin-coil type air washer system for semiconductor manufacturing clean rooms.

  • PDF

A Study on the Improvement of a Cooling System by the Increment of Room Humidity without Reheating Process (실내 습도 증가를 이용한 무재열 냉방시스템 개선에 관한 연구)

  • Lee Hung Joo;Kim Yong Ku
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.6
    • /
    • pp.613-619
    • /
    • 1987
  • In a room air conditioning cooling system, if the room-sensible-heat-factor as plotted on a Psychrometric Chart intersects the saturation curve below the apparatus leaving air dewpoint, reheat must be used to maintain the design room air conditions. However, if the design room humidity is permitted to be raised to some degree, the cooling system will not require reheat as a new room-sensible-heat-factor line is developed between the apparatus leaving air dew-Point and the adjusted design room air conddition point. The advantages to this are the cost of reheat equipment and operation can be avoided. The cycle of this system can be shown on a Psychrometric Chart to plot the design condition points.

  • PDF

Ondol Heating System Using Heat Pump - Comparison of Energy Consumption between the Heat Pump and the Oil Boiler - (열펌프를 이용한 온돌 난방 시스템 - 열펌프와 석유보일러의 소요에너지 비교 -)

  • 김현철;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.351-358
    • /
    • 1999
  • In these days, we are faced to a couple of difficult problems, the one is the unstable price of the energy due to the shortage of fossil fuel resources and the other is the serious environmental pollution from the excessive consumption of fossil fuel. In order to save the thermal energy for the house heating, in this study the heat pump using the natural thermal energy resources was provided for Ondol heating and the thermal energy consumption of the heat was compared to that of oil boiler. The results could be summarized as follows: 1. In the Ondol room the temperature difference between the Ondol surface and room air was about 5∼$10^{\circ}C$ in accordance with the ambient temperature. 2. The Ondol room heating efficiency of the heat pump with compressor of 2PS was the highest at the water flow rate of 200 l/h. 3. The energy saving rate of the heat pump to the oil boiler for heating the Ondol system was 19.3%. 4. The Ondol heating cost of the heat pump was less 20.6% than that of oil boiler when oil price was 478 won/l.

  • PDF

A Study on the Yearly Thermal Environmental Characteristics in Underground Space (지하거주공간의 연간 열환경에 관한 연구)

  • Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.27-33
    • /
    • 1998
  • The room temperature and air conditioning load in the underground space have been investigated numerically by the unsteady heat conduction equation. The model room has 3 m in height and 10 m in width, and it's position in the underground depth are 0.5 m to 5 m. When the room was located around surface, the room temperatures were strongly influenced by the atmosphere. But the underground depth is more than 2 m, the yearly temperature amplitude was small and the temperature phase was delayed. Up to 5 m of the depth, the cooling and heating load was decreased rapidly, but over 10 m of the depth, the air conditioning load was constant.

  • PDF

Numerical Ananlysis on the Tubulent Flow and Heat Transfer in the Tunnel Laminar Flow Type Clean Room(1) (터널층류방식 청정실에서의 난류운동과 열전달에 관한 수치해석(1))

  • 정한식;정효민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.27-33
    • /
    • 1995
  • The turbulent flow and heat transfer in the tunnel laminar flow type clean room is investigated by a numerical simulation. The model clean room is assumed to be a rectngular $5m\times3m$, in which a worktable of 0.75m hight, and 1.5m or 3m long at the floor. Major parameters are the inlet flow velocity, inlet hole size and worktable surface distance. The mean Nusselt number is increased by increasing Reynolds number and can be expressed by the correlation equation.

  • PDF

A study of Heat Analysis on Track Rubber Parts (궤도고무부품의 열해석에 관한 연구)

  • Kim, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.117-122
    • /
    • 1999
  • Track rubber parts has heat built-up as long as dynamic loading is applied from running tracked vehicles. Durability is required for rubber part to sustain the heat accumulation and heat exchange between rubber-metal assembly and environmental air and ground. For this research, the track assembly was divided into four parts i.e., bottom track shoe, upper track pad, pin busing and metal structure. Three rubber parts and metal structure were modelled and analyzed with MARC package program to obtain time-temperature data which was induced form mechanical work of tracked vehicles. heat accumulation data was obtained from special experiments under the room temperature of 25$^{\circ}C\;and\;35^{\circ}C$ to simulate the actual environmental conditions. From this research, it is cleared that the environmental temperature does not affect to the heat accumulation speed in rubber parts. Also, the heat built-up mechanism was clarified from the thermo-mechanical work based on numerical analysis and experiments.

  • PDF

Two Way Set Temperature Control Impact Study on Ground Coupled Heat Pump System Energy Saving (양방향 설정온도 제어에 따른 지중연계 히트펌프 시스템의 에너지 절감량 평가 연구)

  • Kang, Eun-Chul;Lee, Euy-Joon;Min, Kyong-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • Government has recently restricted heating and cooling set temperatures for the commercial and public buildings due to increasing national energy consumption. The goal of this paper is to visualize a future two way indoor set temperature control impact on building energy consumption by using TRNSYS simulation modeling. The building was modelled based on the twin test cell with the same dimension. Air source ground coupled heat pump performance data has been used for modeling by TRNSYS 17. Daejeon weather data has been used from Korea Solar Energy Society. The heating set temperature in the reference room is $24^{\circ}C$ as well as the target room set temperature are $23^{\circ}C$, $22^{\circ}C$, $21^{\circ}C$ and $20^{\circ}C$. The cooling set temperature of the reference room is also $24^{\circ}C$ as well as the target room set temperature of $25^{\circ}C$, $26^{\circ}C$, $27^{\circ}C$ and $28^{\circ}C$. For the air source heat pump system, heating season energy consumption is $35.52kWh/m^2y$ in the reference room. But the heating energy consumption in the target room is reduced to 7.5% whenever the set temperature decreased every $1^{\circ}C$. The cooling energy consumption in the reference room is $4.57kWh/m^2y$. On the other hand, the energy consumption in the target room is reduced to 22% whenever the set temperature increased every $1^{\circ}C$ by two way controller. For the geothermal heat pump system, heating energy consumption in the reference room is reduced to 20.7%. The target room heating energy consumption is reduced to 32.6% when the set temperature is $22^{\circ}C$. The energy consumption in the target room is reduced to 59.5% when the set temperature is $26^{\circ}C$.