• Title/Summary/Keyword: Heat reuse

Search Result 46, Processing Time 0.036 seconds

Properties of Cenosphere Particle in the Fly Ash Generated from the Pulverized Coal Power Plant (석탄화력 발전소에서 생성되는 석탄회에서 Cenosphere 입자의 특성에 관한 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1881-1891
    • /
    • 2000
  • Cenosphere particles of different fly ash formed at the pulverized coal power plant were hollow sphere or filled with small particles inside solid particles. And size was relatively larger than other fly ash particles as well as specific gravity was small to suspend in the water. In this paper, it was demonstrated to contain a variety of morphological particle type, and the physical and chemical properties related to the cenosphere and fly ash particles. Furthermore it was estimated the possibility to reuse the cenosphere particles on the base of cenosphere properties. Cenosphere formation resulted from melting of mineral inclusion in coal, and then gas generation inside the molten droplet. As the aluminosilicate particle was progressively heated, a molten surface layer developed around the solid core. Further heating leaded to cause the formation of fine particles at the core. The mass median diameter(MMD) of cenosphere particles was $123.11{\mu}m$ and the range of size distribution was $100{\sim}200{\mu}m$ with single modal. It was represented that specific density was $0.67g/cm^3$ fineness was $1135g/cm^3$. The chemical components of cenosphere were similar to other fly ash including $SiO_2$, $Al_2O_3$, but the amount of the chemical component was different respectively. In the case of fly ash, $SiO_2$ concentration was 54.75%, and $Al_2O_3$ concentration was 21.96%, so this two components was found in 76.71% of the total concentration. But in the case of cenosphere, it was represented that $SiO_2$ concentration was 59.17% and $Al_2O_3$ concentration was 30.16%, so this two components was found in 89.33% of the total concentration. Glassy component formed by the aluminosilicate was high in the cenosphere, so that it was suitable to use insulating heat material.

  • PDF

Reconstruction with Extracorporeally Radiated Autogenous Bone Graft After Wide Resection of Bone Tumors (골종양 절제후 방사선 조사한 자가골을 이용한 재건술)

  • Lee, Jong-Seok;Jeon, Dae-Geun;Kim, Sug-Jun;Lee, Soo-Yong;Yang, Hyun-Seok
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 1997
  • PURPOSE : For the reconstruction of large bone defect after tumor resection, it is possible to reuse the bone involved by tumor with some treatment to it. Several bone-reusing methods have been reported such as autoclaving, low-heat treatment(pasteurization) and intraoperative radiotherapy. We have used extracorporeally radiated autogenous bone graft for reconstruction after tumor resection, and analyzed the periods for junctional union, functional results and complications to know the indications of this method. METHODS : From Dec. 1993 to Sept. 1995, nine patients had taken autogenous bone graft with extracorporeal irradiation. Eight cases were osteosarcoma and 1 giant cell tumor. The graft sites were 5 in femur, 3 proximal tibia and 1 femur and tibia. Stage 3 was 1 case(GCT), Stage IIB 3 and Stage IIIB 5. After wide resection, surrounding soft tissue and intramedullary and extramedullary portion of the tumor were removed. Radiation was done in 5000cGy to the resected bone. Ender nails and bone cement were inserted and filled into the medulla to prevent fracture. RESULTS : Average follow-up period was 12.3(4 to 21) months. Average junctional union period in simple X-ray was 6.5 months in 4 cases. Average functional score following Enneking's criteria was 19(12-27). Complications were as follows ; condylar fractures and femur neck fracture in 4 cases, subluxation of the knee joint 3 and infection 1. Although local recurrence was detected in 1 case, the site of recurrence was not in the radiated bone but surrounding soft tissue. At final follow-up, no recurrence was found in one case(GCT), CDF 2, AWD 2, DOD 3, and died of chemotherapy related sepsis 1. CONCLUSIONS : Extracorporeally radiated bone autograft is considered to be a method for reconstruction of the large bone defect made by tumor resection, especially in the reconstruction around the joint.

  • PDF

Recovery of Silver and Nitric Acid in the Liquid Waste Resulted from the Mediated Electrochemical Oxidation Process (전기화학적 매개산화공정 폐액에서 은 및 질산의 회수)

  • 최왕규;김영민;이근우;박상윤;오원진
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.17-26
    • /
    • 1998
  • A study on the recovery of silver and nitric acid in the liquid waste resulted from the mediated electrochemical oxidation(MEO) process was conducted. The removal of silver in the concentrated nitric acid solutions was carried out by the electrodeposition. The removal efficiency more than 98% could be obtained in nitric acid concentrations less than 3 M with the current efficiency of nearly 100%. The experimonts on the evaporation for the recovery of nitric acid were performed as well. At the evaporation factor of 25., the degree of nitric acid recovery in 3.5 M nitric acid solution containing 0.5 to 1.0 mol% NaNO, was 80~90% resulting in 2.8~3.1 M nitric acid. The design factors and operating conditions of the distillation tower were analyzed by using MEH model derived by Maphtali-Sandholm with the throughput of 4 kg/hr for the enrichment of dilute nitric acid solution recovered by evaporation to reuse in the MEO process. The distillation column composed of eleven theoretical stages having the overall tray efficiency of 70% are needed to obtain 1.03 kg/h of 12M nitric acid and 2.97 kg/h of water with feed being introduced to the column at tray 6 from the bottom at the reflux ratio of 0.25, the reboiler with the heat load of 2.7 kW, and the condenser with the cooling load of 0.5 kW.

  • PDF

Environmental Impact Evaluation of Mechanical Seal Manufacturing Process by Utilizing Recycled Silicon from End-of-Life PV Module (태양광 폐모듈 실리콘을 재활용한 메커니컬 실 제조공정의 환경성평가)

  • Shin, Byung-Chul;Shin, Ji-Won;Kwon, Woo-Teck;Choi, Joon-Chul;Sun, Ju-Hyeong;Jang, Geun-Yong
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • An environmental evaluation was conducted by employing LCA methodology for a mechanical seal manufacturing process that uses recycled silicon recovered from end-of-cycle PV modules. The recycled silicon was purified and reacted with carbon to synthesize β-SiC particles. Then the particles underwent compression molding, calcination and heat treatment to produce a product. Field data were collected and the potential environmental impacts of each stage were calculated using the LCI DB of the Ministry of Environment. The assessment was based on 6 categories, which were abiotic resource depletion, acidification, eutrophication, global warming, ozone depletion and photochemical oxidant creation. The environmental impacts by category were 45 kg CO2 for global warming and 2.23 kg C2H4 for photochemical oxide creation, and the overall environmental impact by photochemical oxide creation, resource depletion and global warming had a high contribution of 98.7% based on weighted analysis. The wet process of fine grinding and mixing the raw silicon and carbon, and SiC granulation were major factors that caused the environmental impacts. These impacts need to be reduced by converting to a dry process and using a system to recover and reuse the solvent emitted to the atmosphere. It was analyzed that the environmental impacts of resource depletion and global warming decreased by 53.9% and 60.7%, respectively, by recycling silicon from end-of-cycle PV modules. Weighted analysis showed that the overall environmental impact decreased by 27%, and the LCA analysis confirmed that recycling waste modules could be a major means of resource saving and realizing carbon neutrality.

A study on the synthesis of lanthanum oxide (La2O3) from NaLa(SO4)2·H2O by metathesis reaction (NaLa(SO4)2·H2O 결정상으로부터 이온치환반응에 의한 산화란탄 (La2O3) 분말 합성에 관한 연구)

  • Kim, Dae-Weon;Ahn, Nak-Kyoon;Shim, Hyun-Woo;Lee, Chan-Gi;Choi, Hee-Lack;Hong, Hyun Seon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.211-216
    • /
    • 2018
  • The recovery of rare earth elements (REE) including La, Nd and Ce from spent batteries is important issues to reuse scarce resources. Herein, we present a simple recovery process to obtain lanthanum oxide ($La_2O_3$) from spent Ni-MH batteries, and demonstrate the conversion mechanism from $NaLa(SO_4)_2{\cdot}H_2O$ to $La_2O_3$. This strategy requires the initial preparation of $NaLa(SO_4)_2{\cdot}H_2O$ and subsequent metathesis reaction with $Na_2CO_3$ at $70^{\circ}C$. This metathesis reaction resulted in the crystalline lanthanum carbonate hydrate ($La_2(CO_3)_3{\cdot}xH_2O$) powder with plate-like morphology. On the basis of TGA result, the $La_2(CO_3)_3{\cdot}xH_2O$ powder was calcined in air at three different temperatures, that is, $300^{\circ}C$, $500^{\circ}C$, and $1000^{\circ}C$. As the calcination temperature increased, the morphology of powder was changed; prism-like ($NaLa(SO_4)_2{\cdot}H_2O$) ${\rightarrow}$ platelike ($La_2(CO_3)_3{\cdot}xH_2O$) ${\rightarrow}$ aggregated irregular shape ($La_2O_3$). Futhermore, XRD results indicated that the crystalline $La_2O_3$ could be synthesized after the metathesis reaction with $Na_2CO_3$, followed by heat-treatment at $1000^{\circ}C$, along with a change of crystallographic structures; $NaLa(SO_4)_2{\cdot}H_2O$ ${\rightarrow}$ $La_2(CO_3)_3{\cdot}xH_2O$ ${\rightarrow}$ $La_2O_3$.

A Study on the Stability and Sludge Energy Efficiency Evaluation of Torrefied Wood Flour Natural Material Based Coagulant (반탄화목분 천연재료 혼합응집제의 안정성 및 슬러지 에너지화 가능성 평가에 관한 연구)

  • PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.271-282
    • /
    • 2020
  • Sewage treatment plants are social infrastructure of cities. The sewage distribution rate in Korea is reaching 94% based on the sewage statistics based in the year of 2017. In Korean sewage treatment plants, use of PAC (Poly Aluminum Chloride) accounts for 58%. It contains a large amount of impurities (heavy metal) according to the quality standards, however, there have been insufficient efforts to reinforce the standards or technically improve the quality, which resulted in secondary pollution problems from injecting excessive coagulant. Also, the increase in the use of chemicals is leading to the increases in the annual amount of sewage sludge generated in 2017 and the need to reuse sludge. As such, this study aims to verify the possibility of reusing sludge by evaluating the stability of heavy metals based on the injection of coagulant mixture during water treatment which uses the torrefield wood powder and natural materials, and evaluating the sedimentation and heating value of sewage sludge. As a result of analyzing heavy metals (Cr, Fe, Zn, Cu, Cd, As, Pb, and Ni) from the coagulant mixture and PAC (10%), Cr, Cd, Pb, Ni, and Hg were not detected. As for Zn, while its concentration notified in the quality standards for drinking water is 3 mg/L, only a small amount of 0.007 mg/L was detected in the coagulant mixture. Maximum amounts of over double amounts of Fe, Cu, and As were found with PAC (10%) compared to the coagulant mixture. Also, an analysis of sludge sedimentation found that the coagulant mixture showed a better performance of up to double the speed of the conventional coagulant, PAC (10%). The dry-basis lower heating value of sewage sludge produced by injecting the coagulant mixture was 3,378 kcal/kg, while that of sewage sludge generated due to PAC (10%) was 3,171 kcal/kg; although both coagulants met the requirements to be used as auxiliary fuel at thermal power plants, the coagulant mixture developed in this study could secure heating values 200 kal/kg higher than the counterpart. Therefore, utilization of the coagulant mixture for water treatment rather than PAC (10%) is expected to be more environmentally stable and effective, as it helps generating sludge with better stability against heavy metals, having a faster sludge sedimentation, and higher heating value.