• 제목/요약/키워드: Heat recovery system

검색결과 456건 처리시간 0.026초

반도체 클린룸용 에어와셔 외기공조시스템의 에너지소비량에 관한 실험적 연구 (An Experimental Study on Energy Consumption of Air Washer Outdoor Air Conditioning Systems for Semiconductor Manufacturing Clean Rooms)

  • 김기철;김형태;송근수;유경훈;손승우;신대건;박덕준
    • 설비공학논문집
    • /
    • 제24권4호
    • /
    • pp.297-305
    • /
    • 2012
  • In recent large-scale semiconductor manufacturing clean rooms, the energy consumption of outdoor air conditioning systems to heat, humidify, cool and dehumidify incoming outdoor air represents about 45% of the total air conditioning load required to maintain a clean room environment. Therefore, the energy performance evaluation and analysis of outdoor air conditioning systems is useful for reducing the outdoor air conditioning load for a clean room. In the present study, an experiment was conducted to compare the energy consumption of outdoor air conditioning systems with a simple air washer, an exhaust air heat recovery type air washer and a DCC return water heat recovery type air washer. It was shown from the present lab-scale experiment with an outdoor air flow of 1,000 $m^3/h$ that the exhaust air heat recovery type and DCC return water heat recovery type air washer outdoor air conditioning systems were more energy-efficient for the summer and winter operations than the simple air washer outdoor air conditioning system and furthermore, the DCC return water heat recovery type one was the most energy-efficient in the winter operation.

열전소자를 이용한 자동차 엔진 배기 폐열 회수 시스템 해석 모델 개발 (Development of Simulation Model for Waste Heat Recovery from Automotive Engine Exhaust Using Thermoelectric Generator)

  • 김기범
    • 한국산학기술학회논문지
    • /
    • 제14권3호
    • /
    • pp.1022-1026
    • /
    • 2013
  • 최근 엔진 효율 향상을 위하여 열전 소자를 이용한 자동차 엔진 폐열 회수 기술이 주목 받고 있다. 열전소자 해석 모델링은 많이 개발 되었으나, 특정한 시스템 해석 모델과 함께 적용된 사례는 찾아보기 어렵다. 따라서, 본 연구에서는 열전소자를 이용하여 디젤 엔진의 배기 폐열 에너지 회수율을 평가할 수 있는 해석 모델을 1-D 상용 프로그램인 AMESim을 이용하여 개발하였다. 개발한 열전소자 해석 모델은 다양한 소자 종류에 따른 열전 발전 효율 및 폐열 회수율 평가가 가능한 모델이며, 디젤 엔진 해석 모델은 현재 상용화된 모든 디젤 엔진을 모사할 수 있는 모델이다. 여러 운전 조건에서 디젤 엔진의 폐열로부터 하나의 열전소자를 사용하여 회수 가능한 에너지는 약 544.75W이고, 전기로 변환될 수 있는 동력은 약 40.4W이었다. 본 연구에서 개발한 해석 모델은 같은 해석 프로그램에서 연동하여 해석을 용이하게 수행할 수 있기에 추후 열전소자를 이용한 디젤 엔진의 배기 폐열 회수 시스템 개발 시 회수율을 예상하고 시스템 최적화를 수행할 수 있는 방법을 제공할 것으로 기대된다.

3중관 튜브형 잠열 축열조에서의 열전달 특성 연구 (Heat transfer characteristics of Triple-Tube Type Latent Heat Storage Tank)

  • 이욱균;한귀영;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제21권1호
    • /
    • pp.71-82
    • /
    • 2001
  • The heat transfer experiment in a latent heat storage tank as a solar energy storage system for the hot water supply was carried out. The latent heat storage tank was consisted of triple - tube type ; Outer shell for hot water from solar collector, PCM storage vessel in the middle of the tank and inside tube for hot water recovery. The heat storage tank has the dimension of 60 cm long and 34 cm outside diameter. Paraffin wax(m.p = 55.4C) and sodium acetate trihydrate(m.p = 58 C) were employed as the PCM this study. Experimental variables were inlet temperature and flow rate of the hot water for heat storage stage and cold water for heat recovery stage. Temperature profiles, heat transfer coefficient and the efficiency of heat storage$(Q/Q_{max})$ and heat recovery $(Q/Q_{max})$ were determined for the paraffin wax and inorganic salt respectively.

  • PDF

내부코일형 잠열 축열조에서의 열전달 특성 연구 (Heat transfer characteristics of Immersed Coil Type Latent Heat Storage Tank)

  • 이욱균;한귀영;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제21권1호
    • /
    • pp.83-91
    • /
    • 2001
  • The heat transfer experiment in a pilot scale latent heat storage tank as a solar energy storage system for the hot water supply was carried out. The latent heat storage tank was consisted of three parts; Outer shell for hot water from solar collector, PCM storage vessel in the middle of the tank and immersed coil in the PCM vessel for hot water recovery. The heat storage tank has the dimension of 115 cm in height and 32 cm outside diameter. Paraffin wax (m.p = 55.4C) and sodium acetate trihydrate (m.p = 58 C) were employed as the PCM this study. Experimental variables were inlet temperature and flow rate of the hot water for heat storage stage and cold water for heat recovery stage. Temperature profiles, heat transfer coefficient and the efficiency of heat storage $(Q/Q_{max})$ and heat recovery $(Q/Q_{max})$ were determined for the paraffin wax and inorganic salt respectively.

  • PDF

해수 온도차를 이용한 선박의 ORC 발전 시스템 최적화 (A Optimization of the ORC for Ship's Power Generation System)

  • 오철;송영욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.595-602
    • /
    • 2012
  • 본 논문에서는 선박에서 배출되는 $CO_2$ 배출을 최소화하기 위한 노력의 일환으로 선박으로부터 배출되는 열에너지를 회수하고 재활용하는 방안으로 유기랭킨사이클 발전장치를 구동함으로써 선박의 에너지 효율을 높이고 온실가스 배출을 최소화할 수 있는 방안을 연구하였다. 선박에서 배출되는 배기가스와 냉각 시스템에서 배출되는 열에너지를 회수하여 터빈 발전기를 구동하는 ORC 발전시스템을 설계하고 시뮬레이션 하였다. 다양한 친환경 유기냉매를 이용하여 냉매를 적용하여 온도와 유량변화에 따른 열 해석을 실시하였고 냉각수 열원 예열기, 배기가스 가열기로 시스템을 구성하여 2,400kW급의 발전 출력을 얻을 수 있었다.

20kW급 폐열회수 시스템 공정 설계에 관한 연구 (A Study on the Engineering Design for 20kW-Grade Waste Gas Heat Recovery)

  • 김경수;방세경;정은익;이중섭
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.91-96
    • /
    • 2018
  • This study is collects design data through the process design of the organic Rankine cycle, which can produce 20kW of electric power through the recovery of waste heat. In this study, the simulation was conducted by using APSEN HYSYS in order to make the model for the process design of the 20kW class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, with the water steam used as the cooling water for the cooler and the refrigerant R245fa in the cycle. In Case 1 and Case 2, it was expected and found that the cycle efficiency was 10.6% and that 36.86kw was produced, considering the margin of 84% of 20kW. In Case 3 and Case 4, it was expected and found from the simulation that the cycle efficiency was 12% and that 30.0kw was produced, considering the margin of 84% of 20kW.

250kW급 폐열회수 시스템 공정설계에 관한 연구 (A Study on the Engineering Design for 250kW-Grade Waste Gas Heat Recovery)

  • 김경수;방세경;서인호;이상윤;정은익;이중섭
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.90-95
    • /
    • 2019
  • This study aims to gain the design data through the process design of the organic Rankine cycle, which can produce 250kW of electric power through waste heat recovery. In this study, a simulation was conducted using APSEN HYSYS to make the model for the process design of the 250kW-class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, the water steam as the cooling water for the cooler, and the refrigerant R245FA in the cycle. In the final design, it was expected and found from the simulation that the cycle efficiency was 12.62% and that 250kW of power was produced considering the margin of 80%.

LNG FSRU의 재기화 공정에서 폐에너지회수시스템의 엑서지 분석 (Exergy Analysis of Waste Energy Recovery System in Regasification Process of LNG FSRU)

  • 한승현;조재호;권정태;박경우;최병철
    • 신재생에너지
    • /
    • 제18권2호
    • /
    • pp.82-89
    • /
    • 2022
  • In this study, the exergy characteristics were analyzed, according to the mass flow rate of the propane working fluid and the pressure change in the turbine inlet, for the efficient recovery of cold energy and exhaust heat by the waste energy recovery system applied to the LNG FSRU regasification process. When the turbine inlet pressure and mass flow rate of the Primary Rankine Cycle were kept constant, the exergy efficiency and the net power increased. This occurred as the turbine inlet pressure and the mass flow rate of the working fluid increased in the Secondary Rankine Cycle, respectively, and the maximum values were confirmed. In this regard, the fluctuations in the exergy rate flowing into and out of the system and the exergy rate destroyed by pumps, evaporators, turbines, and LNG heat exchangers (condensers) were examined in detail.

폐열회수 보일러의 동특성 시뮬레이션 (Dynamic Simulation of Heat Recovery Steam Generator)

  • 이기현;이동수;조창호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.847-852
    • /
    • 2001
  • A thorough understanding of the transient behavior during load following and start-up is essential in the design and operation of an heat recovery steam generator(HRSG). During this period of time, material that is exposed to high temperature and experiences a large temperature variation is subject to high thermal stress. APESS(Advanced Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is under being developed by Doosan Heavy Industries & Construction Co., Ltd. This paper present the introduction of APESS and the result of simulation for an heat recovery steam generator.

  • PDF

학교 교실의 태양광발전 환기시스템 적용성 연구 (A Study on Application of a Heat Recovery Ventilator using Photovoltaic System in School)

  • 장용성;서승직;홍성희;유권종;박효순
    • 한국태양에너지학회 논문집
    • /
    • 제25권1호
    • /
    • pp.27-34
    • /
    • 2005
  • This study aims to evaluate application of a heat recovery ventilator(HRV) using photovoltaic(PV) system. To this end, we analyzed performance of a PV system, which it was evaluated by monthly power wattage and conversion efficiency according to design capacity of a HRV. The results of this study can be summarized as follows. (1) A conversion efficiency of the PCS was evaluated about 86% in rated power. (2) A maximum, minimum and average output power were respectively analyzed 49.2W, 47.3W, and 48.8W. (3) Total power wattage of 200W PV system was 211kW and it was 316kW in case of 300W PV system. (4) Insufficient electrical power of a duct and window type ventilation system was respectively calculated 133.5kW and 147.7kW.