• Title/Summary/Keyword: Heat pump using of CO2

Search Result 93, Processing Time 0.02 seconds

Design Guidlines of Geothermal Heat Pump System Using Standing Column Well (수주지열정(SCW)을 이용한 천부지열 냉난방시스템 설계지침)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Kim, Hyong-Soo;Jeon, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.607-613
    • /
    • 2006
  • For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.

Thermoeconomic Analysis of Hybrid Desiccant Cooling System Driven by District Heating (지역난방에 연계된 하이브리드 제습냉방시스템의 경제성 분석)

  • Ahn, Joon;Kim, Jaeyool;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.721-729
    • /
    • 2014
  • A hybrid desiccant cooling system (HDCS) that uses a heat pump driven by district heating instead of a sensible rotor can provide an increased energy efficiency in summer. In this paper, the summer operation costs and initial costs of both the HDCS and traditional systems are analyzed using annual equal payments, and national benefits are found from using the HDCS instead of traditional systems. In the analysis results, the HDCS reduces the operation cost by 30 compared to the traditional systems, and each HDCS unit has 0.079 TOE per year of primary energy savings and 0.835 $TCO_2$ per year of $CO_2$ emission reduction more than the traditional systems. If HDCSs were to be installed in 680,000 households by 2020, this would produce a replacement power effect of 463 MW. Despite this savings effect, HDCSs require a government subsidy before they can be supplied because the initial cost is higher than that of traditional systems. Thus, this paper calculates suitable subsidies and suggests a supply method for HDCSs considering the national benefits.

Comparison of Phytoncide (monoterpene) Concentration by Type of Recreational Forest (산림휴양지 유형에 따른 피톤치드(모노테르펜) 농도 비교)

  • Lee, Yong-Ki;Woo, Jung-Sik;Choi, Si-Rim;Shin, Eun-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.4
    • /
    • pp.241-248
    • /
    • 2015
  • Objectives: This study was conducted to provide scientific and effective information on phytoncides, which are associated with forest healing, and to activate recreational forests. Methods: The target sites were natural recreation forests, a forest park and an arboretum, and the control sites were three urban parks. The samples were collected at a volume of 6.0 L and a flow rate of 0.1 L/min for one hour using a low volume pump and the solid adsorbent sampling method. The phytoncide compounds adsorbed in the Tenax TA tube were analyzed by a automatic heat desorption unit and GC-MS. Results: By type of recreational forest, the annual concentrations of phytoncide (monoterpene) for the forest park showed the highest concentration with $1.450{\mu}g/m^3$, while those for the arboretum showed the lowest concentration at $0.892{\mu}g/m^3$, and thus the concentration of the forest park was approximately 1.6 times higher than the arboretum. The season showing the highest concentration of phytoncides was summer (June) and the forest park was the highest among the recreational forests. The concentrations of major components for phytoncide showed in descending order: ${\alpha}-pinene$, ${\beta}-pinene$, camphene, 3-carene and limonene. The seasonal concentration of ${\alpha}-pinene$, camphene and ${\beta}-pinene$ by type of recreational forest increased in April, which is characterized by low temperature and humidity, and the seasonal concentration of camphene decreased with higher humidity. The meteorological factors which had the high correlation with the concentration of total terpene were temperature and humidity. $CO_2$ and $O_2$ showed an inverse correlation. Conclusion: The major components of phytoncide were ${\alpha}-pinene$, ${\beta}-pinene$, camphene, 3-carene and limonene in descending order of concentration. Further and systematic study on the chemical nature of individual phytoncides, and on the effect of phytoncides on humans needs to be performed.