• Title/Summary/Keyword: Heat pump system

Search Result 1,116, Processing Time 0.028 seconds

Development and Evaluation of a Novel Electro-mechanical Implantable Ventricular Assist System (전기-기계식 이식형 좌심실 보조 시스템의 개발 및 평가)

  • 조한상;김원곤;이원용;곽승민;김삼성;김재기;김준택;류문호;류은숙
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.349-358
    • /
    • 2001
  • A novel electro-mechanical implantable ventricular assist system is developed as a bridge to transplantation or recovery for patients with end-stage heart failure. The developed system is composed of an implanted blood pump, an external monitoring system which stores data, and a wearable system including a portable external driver and a portable power supply system. The blood pump is designed to be implanted into the left upper abdominal space and provides blood flow from the left ventricular apex to the aorta. The pulsatile blood flow is generated by a double cylindrical cam. There was mo excessive heat emission from the blood pump into the temperature-controlled chamber in the heat test and no stagnated flow within the blood sac by the observation in the flow visualization test. Animal experiments were performed using sheep and calves. The maximum assist flow rate reached 7.85L/min in the animal experiment. The evaluation results showed that the developed system was feasible for the implantable ventricular assist system. The long-term in vitro durability test and mid-term in vivo experiments are in progress and mow the modified next model is under development.

  • PDF

Thermal Response Test (TRT) interpretation and the status in Korea (열응답 실험 해석 및 국내 현황)

  • Shim, Byoung Ohan;Choi, Choonghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.168.2-168.2
    • /
    • 2010
  • The growing market for geothermal heat pump system requires great consideration of quality control and assurance in design and construction. The borehole heat exchanger of GHP system should be sustainable, economical and ecological. Thermal Response Test (TRT) is a useful method for site investigation to obtain reliable data for a optimal system design from the technical and economical aspect. Intensive researches combined with exchange of experiences on an international level within the IEA ECES Annex 21 improved the technology. Major subjects on the interpretation of TRT are development of improved evaluation models, evaluation of the TRT with respect to geological layers and investigation of the influence of ground water. Current status of TRT in South Korea, as well as a new version of the Korean TRT standard test procedure was presented. TRT is mostly used for governmental supported projects with corresponds to more than 100 GCHP systems per year. More than 200 tests are applied, mostly on single U-tube heat exchangers (about 95%). Bentonite is the most common grouting to be used. KIGAM (Korea Institute of Geoscience & Mineral Resources) is also keeping a GIS geological and geothermal database. In the institute also laboratory measurements of rock properties are carried out. About 90% of the laboratory measurements of the rock heat conductivity shows higher values than the in-situ TRT.

  • PDF

Preliminary Analysis on Design Parameters and Application Effects of Surface Water Heat Exchanger (SWHE) (지표수 열교환기 설계 변수와 적용 효과에 대한 선행 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.3
    • /
    • pp.24-32
    • /
    • 2016
  • Commercial buildings and institutions are generally cooling-dominated and therefore reject more heat to a borehole ground heat exchanger (BHE) than they extract over the annual cycle. Shallow ponds can provide a cost-effective means to balance the thermal loads to the ground and to reduce the length of BHE. This paper presents the analysis results of the impact of design parameters on the length of SWHE pipe and its application effect on geothermal heat pump (GHP) system using BHE. In order to analysis, we applied ${\varepsilon}-NTU$ method on designing the length of SWHE pipe. Analysis results show that the required pipe length of SWHE was decreased with the increase of approach temperature difference and with the decrease of pipe wall thickness. In addition, when the SWHE was applied to the GHP system, the temperature of BHE was more stable than that of standalone BHE system.

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (2))

  • Ryozo, Ooka;Hwang, Suk-Ho;Kentaro, Sekine;Yosuke, Shimawaki;Nam, Yu-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.155-160
    • /
    • 2005
  • To purpose of this research is to develop the numerical model for simulating performance of ground heat exchanger with high prediction accuracy. This paper describes the development of a numerical model that simulates the heat transfer between ground and circulation water in ground heat exchanger. Furthermore, we propose the estimating technique of soil properties, such as thermal conductivity, heat capacity and hydraulic conductivity, based on ground investigation. Comparison between experiment and numerical analysis based on the model developed above was conducted under the condition of the experiment in 2004. The result of analysis agreed well with the experimental result.

  • PDF