• 제목/요약/키워드: Heat pump system

검색결과 1,116건 처리시간 0.036초

온실 냉방을 위한 히트펌프의 성능 분석 (Performance Analysis of Heat Pump System for Greenhouse Cooling)

  • 윤용철;서원명;이석건
    • 한국농공학회지
    • /
    • 제43권6호
    • /
    • pp.120-126
    • /
    • 2001
  • This experiment was carried out to analyse on the cooling and dehumidifying effects of greenhouse by air-to-water heat pump system employing the air as cooling source. following results were obtained ; 1. The coefficients of performance (COP) of heat pump itself and total heat pump system were approximately 2.71~2.88 and 1.99~2.22, respectively. 2. The night-time cooling load of experimental greenhouse was 64.9 MJ/h, and the heat absorbed (cooling load) from heat pump system was 816.3~1,004.6 MJ/day. 3. The dehumidified moisture amount from experimental greenhouse was 7.0~15.0 kg/h. 4. The night time temperature of experimental greenhouse cooled by heat pump system could be maintained 4~6$^{\circ}C$ lower than that of control greenhouse which was almost equal to outside air temperature.

  • PDF

이중관 열교환기를 사용한 물 대 공기 열펌프 시스템의 설계와 성능해석 (Design and performance analysis of water-to-air heat pump system using double-tube heat exchanger)

  • 한도영;박관준
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.462-471
    • /
    • 1997
  • The water-to-air heat pump system requires relatively lower energy consumption and less installation space. The heat exchangers used for this system are the finned-tube type for the indoor unit and the double-tube type for the outdoor unit. Mathematical models for this system are developed and programmed in computer. Experimental data from various conditions are obtained and compared with calculated values from the computer simulation program. Differences of cooling capacity and COP are 1.25% and 0.47%, and those of heating capacity and COP are 0.51% and 0.13%, respectively. Simulation results are in good agreement with test results. Therefore, the developed program is effectively used for the design and the performance prediction of water-to-air heat pump system.

  • PDF

온수 급탕 및 난방을 위한 히트 펌프 태양열 시스템의 성능 분석 (Performance Analysis of Solar Thermal System with Heat Pump for Domestic Hot Water and Space Heating)

  • 손진국
    • 한국태양에너지학회 논문집
    • /
    • 제38권5호
    • /
    • pp.49-62
    • /
    • 2018
  • This study aims to analyze the performance of solar thermal system with heat pump for domestic hot water and heat supply. There are four types of system. Systems are categorized based on the existence of a heat pump and the ways of controlling the working fluid circulating from the collector. Working fluid is controlled by either temperature level (categorized as system 1 and 2) or sequential flow (system 3 and 4). Heat balance of the system, the solar fraction, hot water and heating supply rates, and performance of heat pump are analyzed using TRNSYS and TESS component programs. Technical specifications of the main facilities are as follow; the area of the collector to $25m^2$, the volumes of the main tank and the buffer tank to $0.5m^3$ and $0.8m^3$, respectively. Heating capacity of the heat pump in the heating mode is set to 30,000 kJ / hr. Hot water supply set 65 liters per person each day, total heat transfer coefficient of the building to 1,500 kJ / kg.K. Indoor temperature is kept steadily around $22^{\circ}C$. The results are as follows; 6 months average solar fraction of system 1 turns out to be 39%, which is 6.7% higher than system 2 without the heat pump, indicating a 25% increase of solar fraction compared to that of system 2. In addition, the solar fraction of system 1 is 2% higher than that of system 3. Hot water and heating supply rate of system 1 are 93% and 35%, respectively. Considering the heat balance of the system, higher heat efficiency, and solar fraction, as whole, it can be concluded that system 1 is the most suitable system for hot water and heat supply.

건물일체형 지열히트펌프시스템의 난방 성능 분석 (Heating Performance Analysis of Building Integrated Geothermal System)

  • 김상진;이진욱;김태연;이승복
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.206-210
    • /
    • 2012
  • Ground source heat pump is a central heating and cooling system that pumps heat to or from the ground. Building Integrated Geothermal system used in this experiment is one of the Ground Source Heat Pump Systems which utilize energy pile. The purpose of this study is to evaluate heating performance of the system. The building is a low-energy experiment apartment in Yonsei University Songdo Campus and the subject is one of the energy reduced houses in this apartment. In the experiment, indoor temperature, outdoor temperature and the inlet and outlet temperature of ground heat exchanger and subject model, were measured. Then the heat pump's Coefficient of performance(COP) of the heat pump was calculated. As a result, the COP of heat pump is 4-5. Although the depth of the ground heat exchanger in this experiment is shallower than usual heat exchanger, the result of heating performance of this system was good as well.

  • PDF

$MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구 (A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump)

  • 권오경;윤재호;김정욱;이진호
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.

공기열원 및 수열원을 이용한 열펌프 시스템의 성능특성에 관한 연구 (A study on the comparison of the performance of a heat pump system with air and water heat sources)

  • 고원빈;박윤철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.563-568
    • /
    • 2016
  • 본 연구는 연료전지 자동차용 공기조화기의 난방성능평가를 위하여 기존의 전반적인 히트펌프 시스템 중 공기열원 히트펌프 시스템의 증발기를 판형열교환기로 교체하여 시스템에 흐르는 냉매와 연료전지 스택 폐열을 직접 열교환이 가능한 수열원 이용이 가능한 난방시스템의 성능실험을 수행하였다. 실험결과에서 압축기의 회전수가 높을수록 소비동력이 증가하였다. 공기열원 이용방식의 경우 압축기 회전수가 1,200rpm이고 EEV개도가 25%인 경우 $COP_h$가 2.03으로 가장 높게 나타났고, 같은 압축기의 회전수에서 수열원 시스템은 EEV개도가 75% 및 스택 폐열의 온도가 $50^{\circ}C$인 경우 $COP_h$가 9.42로 가장 높게 나타났다.

유출지하수열원 지열히트펌프의 냉난방성능 (Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

지열 이용 히트펌프 시스템의 열성능 해석 (Analysis of Thermal Performance of Ground-Source Heat Pump System)

  • 신우철;백남춘;김욱중;고득용
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.95-101
    • /
    • 2006
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHF) system. The calculation was performed for two design factors: the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model of water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.

연료전지 자동차용 이산화탄소 열펌프 시스템의 성능평가 (Performance Evaluation of a $CO_2$ Heat Pump System for Fuel Cell Vehicles)

  • 김성철;박종철;김민수;원종필
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.37-44
    • /
    • 2008
  • The global warming potential (GWP) of $CO_2$ refrigerant is 1/1300 times lower than that of R134a. Furthermore, the size and weight of the automotive heat pump system can decrease because $CO_2$ operates at high pressure with significantly higher discharge temperature and larger temperature change. The presented $CO_2$ heat pump system was designed for both cooling and heating in fuel cell vehicles. In this study, the performance characteristics of the heat pump system were analyzed for heating, and results for performance were provided for operating conditions when using recovered heat from the stack coolant. The performance of the heat pump system with heater core was compared with that of the conventional heating system with heater core and that of the heat pump system without heater core, and thus the heat pump system with heater core showed the best performance among the selected heating systems. On the other hand, the heating performance of two different types of coolant/air heat pump systems with heater core was compared each other at various coolant inlet temperatures. Furthermore, to use exhausted thermal energy through the radiator, experiments were carried out by changing the arrangement of a radiator and an outdoor evaporator, and quantified the heating effectiveness.

2-사이클 열펌프 건조기에서 건조과정에 대한 실험적 연구 (Experimental Study on the Drying Process in the Two-Cycle Heat Pump Dryer)

  • 이공훈;김욱중;김종률;이상열
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.636-641
    • /
    • 2008
  • Heat pump drying has a great potential for energy saving due to its high energy efficiency in comparison to conventional air drying. The heat pump dryer is usually operated at the temperature less than $50^{\circ}C$ and the drying temperature is limited to the operating temperature of the heat pump system. In order to increase the drying temperature, the special box-type heat pump dryer has been developed. The dryer uses the two-cycle heat pump system which has the two heat pump cycles for high and low temperature heating. The high temperature cycle uses the refrigerant 124 to get the temperature greater than $80^{\circ}C$ and the low temperature cycle uses the refrigerant 134a. The drying experiment has been carried out to figure out the performance of the dryer with the selected drying material.

  • PDF