• Title/Summary/Keyword: Heat of sublimation

Search Result 150, Processing Time 0.023 seconds

Heat/Mass Transfer and Flow Characteristics within a Film Cooling Hole of Square Cross Sections with Asymmetric Inlet Flow Condition (비대칭 입구조건을 갖는 정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성)

  • Rhee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.14-21
    • /
    • 2001
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet flow conditions. The asymmetric inlet flow condition is achieved by making distances between side walls of secondary flow duct and film cooling hole different; one side wall is $2D_h$ apart from the center of film cooling hole, while the other side wall is $1.5D_h$ apart from the center of film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. Swirl flow is generated at the inlet region and the heat/mass transfer pattern with the asymmetric inlet flow condition is changed significantly from that with the symmetric condition. At the exit region, the effect of mainstream on the inside hole flow is reduced with asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl flow generated by the asymmetric inlet condition.

  • PDF

Develop ECO-FREE high concentration Full black dye using transfer printing and application technology (전사날염용 ECO-FREE 고농도 Full Black 염료개발과 응용기술)

  • Cho, Ho-Hyun;Chung, Myung-Hee;Lee, A-Ram
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2017
  • Transfer printing is a method to combine printing and dyeing technology by the use of sublimation. It is an environmentally-friendly printing method that saves costs, reduces the production processes by the omission of the washing process, and saves time by maintaining quality. Due to the development of transfer printing, a high value added printing technology is available now but color fastness to sublimation of the printing products is still low since there are few dyes that have an affinity to the fabrics and the application technology is still inadequate. Specially, in case of high concentration black dyes, eco-label type black dyes, which is a substitution for general dispersal dyes, have been developed while general dispersal black dyes are still used, creating issues such as color differences on the surface and back side of the fabrics and contamination by friction after transfer printing. There are also some restricted substances such as allergens. To address these issues, high concentration black dyes and application technology that are environmentally-friendly and that have over 16 K/S through the use of single dyes with excellent color fastness, fixation ability, and similar melting temperature were developed for this study.

  • PDF

Effect of Crossflow on Heat (Mass) Transfer of an Impingement/Effusion Cooling System (충돌제트/유출냉각기법에서 횡방향유동이 열/물질전달에 미치는 영향)

  • Nam, Yong-Woo;Choi, Jong-Hyun;Cho, Hyung-Hee;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2219-2226
    • /
    • 2003
  • Two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter, and initial crossflow passes between the plates. Both the injection and effusion hole diameters are 10 mm, and the Reynolds number based on the hole diameter and hole-to-hole pitch are fixed to 10,000 and 6 times of the hole diameter, respectively. To investigate the effect of crossflow, the flow rate of crossflow is changed from 0.2 to 2 times of that of the impinging jet. A naphthalene sublimation method is used to determine the local heat/mass transfer coefficients on the upward facing surface of the effusion plate. With the initial crossflow, the heat/mass transfer rates on the effusion (target) plate decrease as the velocity of crossflow increases, since the crossflow induces the locally low transfer regions formed at the mid-way between the effusion holes. However, the impingement/effusion cooling with crossflow presents higher heat/mass transfer rates than the array jet impingement cooling with the same initial crossflow.

  • PDF

Effects of Bleed Flow and Angled Ribs on Heat Transfer Distributions in a Rotating Square Channel (유출유동 및 각도진 요철이 회전하는 사각덕트 내 열전달분포에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.76-82
    • /
    • 2007
  • The present study investigated the effects of channel rotation and bleed flow on heat/mass transfer in a square channel with $45^{\circ}$ rib turbulators. The bleed holes were located between the rib turbulators on the leading surface and those on the trailing surface case by case. The tests were conducted under the conditions of various bleed ratios (0.0, 0.2, 0.4) and rotation numbers (0.0, 0.2, 0.4) at Re=10,000. The results suggested that heat/mass transfer characteristics were influenced by the Coriolis force, decrement of main flow rate, secondary flow by angled ribs and bleed hole location. As the bleed ratio (BR) increased, the heat/mass transfer decreased on both surfaces due to the reduction of main flow rate. With increment of the rotation number, heat/mass transfer also decreased and almost the same because the reattachment of the secondary flow induced by angled ribs was weakened on the leading surface and the secondary flow was disturbed on the trailing surface by the Coriolis force.

Heat Transfer Characteristics on the Tip Surface of a High-Turning Turbine Rotor Blade (고선회 터빈 동익 팁 표면에서의 열전달 특성)

  • Lee, Sang-Woo;Moon, Hyun-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.207-215
    • /
    • 2008
  • The heat/mass transfer characteristics on the plane tip surface of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. At the Reynolds number of $2.09{\times}10^5$, heat/mass transfer coefficients are measured for the tip gap height-to-chord ratio, h/c, of 2.0% at turbulence levels of Tu = 0.3 and 14.7%. A tip-surface flow visualization is also performed for h/c = 2.0% at Tu = 0.3%. The results show that there exists a strong flow separation/re-attachment process, which results in severe local thermal load along the pressure-side corner, and a pair of vortices named "tip gap vortices" in this study is identified along the pressure and suction-side tip corners near the leading edge. The loci and subsequent development of the pressure- and suction-side tip gap vortices are discussed in detail. The combustor-level high inlet turbulence, which increases the tip-surface heat/mass transfer, provides more uniform thermal-load distribution.

Experimental Study on the Heat Transfer Characteristics on a Film-Cooled Flat Plate - Effect of Injection Angle and Blowing Rate - (막냉각되는 평판에서의 열전달특성에 관한 실험적 연구)

  • 이상우;신세현;이택시;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1415-1427
    • /
    • 1988
  • The effect of injection angle and blowing rate on a film-cooled flat plate has been investigated experimentally. Three cases of 90.deg. injection, 35.deg. streamwise injection and 35.deg. spanwise injection are employed. The naphthalene sublimation technique in used to obtain local mass transfer coefficients. Thus heat transfer coefficients are evaluated using heat-mass transfer analogy. Schlieren photographs are taken to visualize the trajectory of injection fluid by introducing carbon dioxide gas through injection tubes. The experiments indicate that due to the injection the heat transfer coefficients increase significantly in the neighborhood of the infection holes, so the design of film cooled component must be based on the heat transfer coefficient with injection as well as film cooling effectiveness.

Effect of Channel Rotation and Bleed Flow on Heat/Mass Transfer Characteristics in a 90° Ribbed Square Channel (채널회전 및 유출유동이 90도 요철이 설치된 사각채널 내 열/물질전달 특성에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.83-90
    • /
    • 2007
  • The present study investigated the effects of channel rotation and bleed flow on heat/mass transfer in a $90^{\circ}$ ribbed square channel. The bleed holes were located between the rib turbulators on the leading surface and those on the trailing surface case by case. The tests were conducted under the conditions of various bleeding ratios (0.0, 0.2, 0.4) and rotation numbers (0.0, 0.2, 0.4) at Re=10,000. The results suggested that heat/mass transfer characteristics were influenced by the Coriolis force, bleed flow and bleed hole location. The heat/mass transfer on the surface with bleed flow was more increased than that without bleed flow but that on the opposition surface was decreased. Those were due to the effects of the tripping flow and the diminution of main flow rate respectively. The results also showed that the heat/mass transfer characteristics were different according to bleed hole location and channel rotation.

Heat(Mass) Transfer Characteristics in the Tip-Leakage Flow Region of a High-Turning Turbine Rotor Blade (회전각이 큰 터빈 동익 누설유동 영역에서의 열(물질)전달 특성)

  • Lee, Sang-Woo;Kwon, Hyun-Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.535-544
    • /
    • 2004
  • The heat (mass) transfer characteristics in the tip-leakage flow region of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. The heat transfer data in the tip-leakage flow area for the tip clearance-to-span ratio, h/s, of 2.0% are compared with those in endwall three-dimensional flow region without tip clearance (h/s : 0.0 %). The result shows that the thermal load in the tip-leakage flow region for h/s = 2.0% is more severe than that in the endwall flow region for h/s : 0.0%. The thermal loads even at the leading and trailing edges for h/s = 2.0% are found larger than those for h/s = 0.0%. The tip-leakage flow results in heat transfer augmentations near the tip on both pressure and suction sides in comparison with the mid-span results.

Changes in Ice Dendrite Size during Freezing Process in Gelatin Matrix as a Model Food System (모델 식품으로 젤라틴 매트릭스에서 동결과정에 따른 얼음 결정체 변화)

  • Min, Sang-Gi;Hong, Geun-Pyo;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.312-318
    • /
    • 2008
  • The objective of this study was to investigate the changes in ice dendrite size during freezing process in gelatin matrix as a model food system in order to provide mathematical relation between freezing condition and ice dendrite size. Gelatin gel as a model matrix was frozen in unidirectional Neumann's type of heat transfer. The thermograms' analysis allowed to determine the freezing temperature of the sample, the position of the freezing front versus time, and thus, freezing front rate. The morphology of ice dendrites was observed by scanning electron microscopy after freeze-drying. We observed that the means size of ice dendrite increased with the distance to the cooling plate; however, it decreased with the cooling rate and the cooling temperature. In addition, the shorter durations of the freeze-drying process was shorter decreeing the decreased the freezing front rate, resulted in their resulting in a larger pore size of the ice dendrite pores for the sublimation channel of that operate as water vapor sublimation channels. From these results, we could derive a linear regression as an empirical mathematical model equation between the ice dendrite size and the inverse of freezing front rate.

Effect of Heat and Moisture on the Phase Transition in Dimethylammonium-Facilitated CsPbI3 Perovskite (다이메틸암모늄 유도 CsPbI3 페로브스카이트 상의 상전이 거동에 대한 열과 수분의 영향)

  • Sohyun Kang;Seungmin Lee;Jun Hong Noh
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.344-351
    • /
    • 2023
  • Cesium lead iodide (CsPbI3) with a bandgap of ~1.7 eV is an attractive material for use as a wide-gap perovskite in tandem perovskite solar cells due to its single halide component, which is capable of inhibiting halide segregation. However, phase transition into a photo inactive δ-CsPbI3 at room temperature significantly hinders performance and stability. Thus, maintaining the photo-active phase is a key challenge because it determines the reliability of the tandem device. The dimethylammonium (DMA)-facilitated CsPbI3, widely used to fabricate CsPbI3, exhibits different phase transition behaviors than pure CsPbI3. Here, we experimentally investigated the phase behavior of DMA-facilitated CsPbI3 when exposed to external factors, such as heat and moisture. In DMA-facilitated CsPbI3 films, the phase transition involving degradation was observed to begin at a temperature of 150 ℃ and a relative humidity of 65 %, which is presumed to be related to the sublimation of DMA. Forming a closed system to inhibit the sublimation of DMA significantly improved the phase transition under the same conditions. These results indicate that management of DMA is a crucial factor in maintaining the photo-active phase and implies that when employing DMA designs are necessary to ensure phase stability in DMA-facilitated CsPbI3 devices.