• Title/Summary/Keyword: Heat of reaction

Search Result 1,882, Processing Time 0.035 seconds

The Characteristics of the Dehydration Reaction and the Durability for the Thermal Decomposition in Na2B4O7·10H2O/Na2B4O7·5H2O System (Na2B4O7·10H2O/Na2B4O7·5H2O 계의 열분해 탈수반응 및 내구성 고찰)

  • Choi, Ho-Sang;Park, Young-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.885-888
    • /
    • 1999
  • This study was carried out to determine the reaction kinetic constant of the dehydration - thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ and to investigate the durability during the repeated use of a chemical heat-storage material and the reproducibility of reaction system. The order of the dehydration reaction was 1st-order. The reaction rate was directly proportional to a partial pressure difference of water steam. The kinetic constant was 0.27 and the reproducibility of dehydration reaction for a kinetic constant and a reaction order was excellent. The activity variation in the durability test of a chemical heat-storage material was within range of ${\pm}5%$ during the repeatedly use in several times.

  • PDF

Reduction of Hydration Heat in Division-Placed Mass Concrete Considering the Difference of Setting Time in Super Retarding Agents (초지연제의 응결시간차에 따라 분할타설된 매스 콘크리트의 수화열 저감)

  • Gi, Suck;Pei, Zheng-Lie;Hwang, Yin-Seong;Yoon, Chi-Whan;Kim, Gi-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.805-808
    • /
    • 2002
  • This study is designed to reduction of hydration heat of 4 layer division-placed mass concrete considering the difference of setting time of super retarding agent. According to the results, peak temperature of plain concrete by hydration heat show $63^{\circ}C$ around the age of 1 days. Hydration heat is lowest in the bottom layer, and highest in the middle of 3rd layer from the bottom. Hydration heat of mock up structure, which is division-placed at the same interval of 1 and 2 days by setting time difference of super retarding agent, is highest in the bottom layer because after peak temperature of 4th layer, hydration reaction progresses in order of 3rd, 2nd and 1st layer. But in mock up structure which is division-placed at the various interval. peak temperature by hydration heat is reduced by about $13^{\circ}C$, compared with plain concrete because after first peak hydration heat of 4th layer (plain concrete), hydration reaction progresses after the drop of hydration heat in order of 3rd, 2nd and 1st layer.

  • PDF

Effects of Hydrophilic Surface Treatment on Condensation Heat Transfer at the Outside Wall of Horizontal Tube (수평관 외벽에서 친수성 표면처리가 응축열전달에 미치는 영향)

  • 황규대;박노성;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.533-540
    • /
    • 2000
  • Condensation heat transfer characteristics have been investigated experimentally when a water vapor is condensed on the outside of a horizontal copper tube in a condenser. This problem is of particular interest in the design of a LiBr-water absorption system. Hydrophilic surface modification was performed to increase the wettability on the copper tube. The optimum hydrophilic treatment condition using acethylene and nitrogen as reaction gas is also studied in detail. The results obtained indicate that the optimum reaction gas ratio of acethylene to nitrogen for hydrophilic surface modification was found to be 7 : 3 for the best condensation heat transfer. In the wide ranges of coolant inlet temperatures, and coolant mass flow rates, both the condensation heat transfer rate and the condensation heat transfer coefficient of a hydrophilic copper tube are increased substantially, compared with those of a conventional copper tube used in a condenser. It is also found that the condensation heat transfer enhancement by the hydrophilic surface modification still emains even after a hundred cycles of wet/dry processes.

  • PDF

A Theoretical Study on the Feasibility of Long Distance Heat Transport Network Using Decomposition/Synthesis of Methanol (메탄올의 분해/합성 반응을 이용한 장거리 열수송 네트웤 구축 가능성에 대한 이론적 연구)

  • Jang, In-Sung;An, Ik-Kyoun;Han, Gui-Young;Moon, Seung-Hyun;Park, Sung-Youl;Park, Min-A;Lee, Hoon;Yoon, Seok-Mann
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2007.11a
    • /
    • pp.187-192
    • /
    • 2007
  • A project is being implemented to develop the long distance energy transport technology using the chemical reactions. This project can be classified into three main research categories covering heat recovery reaction, long distance energy transport, and heat generation reaction. In this study, the methanol is selected as a system material since it shows several unique superior characteristics as follows: gaseous state of reactant and product, large heat of reaction, high yields of reaction at relatively low temperature, and also steady and economical supply. Furthermore, it is anticipated that the outcomes of this study can be widely applied to the related industries. A feasibility study was carried out to evaluate the economics of this technology which study was based on the following case: 10,000 households, 15km distance energy transportation, utilization of waste heat from power plant.

  • PDF

Fabricatiion and Characterization of ${Bi_2}{Sr_2}{CaCu_2}{O_8}$ Superconductor Thick Films on Cu Substrates using Cu-free Precursors (Cu-free 전구체를 이용하여 구리 기판 위에 ${Bi_2}{Sr_2}{CaCu_2}{O_8}$ 초전도 후막의 제조 및 특성)

  • 한상철;김상준;한영희;성태현;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.349-358
    • /
    • 2000
  • Fabrication and Characterization of Bi$_{2}$/Sr$_{2}$/CaCu$_{2}$/O$_{8}$(Bi2212) superconductor thick films were fabricated successfully on C tapes by liquid reaction between Cu-free precursors of Bi$_{x}$/SrCaO/$_{y}$(x=1.2-2) and Cu tapes. Cu-free Bi-Sr-Ca-O powder mixtures were screen-printed on Cu tapes and heat-treated at 850-87$0^{\circ}C$ for several minutes in air oxygen nitrogen and low oxygen pressure. In order to obtain the optimum heat-treatment condition we studied the effect of the precursor composition the printing thickness and the heat-treatment atmosphere on the superconducting properties of Bi2212 films and the reaction mechanism. Microstructures and phases of thick films were analyzed by films and the reaction mechanism. Microstructures and phases of thick films were analyzed by optical microscope and XRD. The electric properties of superonducting films were examined by the four probe method. At heat-treatment temperature the thick films were in a partially molten state by liquid reaction between CuO of the oxidized copper tape and the precursors which were printed on Cu tapes. During the heat-treatment procedure Bi2212 superconducting particle nucleate and grow in preferred orientations.ons.s.

  • PDF

Effects of the Preheating Treatments of Raw Ginseng in the Model System on the Synthesis of the Maillard Type-Browning Reaction Products of Red Ginseng

  • Suzuki, Yukio;Choi, Kang-Ju;Uchida, Kei;Ko, Sung-Ryong
    • Journal of Ginseng Research
    • /
    • v.28 no.3
    • /
    • pp.136-142
    • /
    • 2004
  • During our investigations on the relationship between the browning reaction of ginseng root and two compounds (arginyl-fructosyl-glucose and arginyl-fructose) in the model system of steaming and heat-drying processes for the preparation of red ginseng, the preheating treatment of main roots of raw ginseng at 60∼70$^{\circ}C$ prior to the steaming and heat-drying processes was found to bring about the gelatinization of starch granules. The enzymatic hydrolysis of gelatinized starch to maltose, a marked formation of maltose, and the increase of both free arginine and total amino acids, resulting the acceleration of the Maillard type-browning reaction of ginseng root during the steaming and heat-drying processes, and the rise of brown color intensity of red ginseng. These results show that the preheating treatment may be effective for the decrease of inside white of red ginseng.

A Study on the Manufacture of WC MMCs by In-situ Reaction Process(1);The Formation Mechanism of Interfacial Reaction Layer in Cast-bonded Cast iron/W wire and Its Structure (기지내 반응법에 의한 WC 복합재료의 제조에 관한 연구(1);주조접합된 주철/텅스텐 와이어의 계면반응층 생성기구와 조직특성)

  • Park, Heung-Il;Kim, Chang-Up;Huh, Bo-Young;Lee, Sung-Youl;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.272-282
    • /
    • 1995
  • Iron-based metal matrix composites have been recently investigated for the use of inexpensive abrasion resistance material. This paper carried out to investigate the in-situ reaction effects on the microstructural characteristics and the formation mechanism of tungsten carbides in a white cast iron matrix. The specimens of Fe-3.2%C-2.8%Si alloy cast-bonded with tungsten wire were cast in the metal mold and isothermally heat treated at $950^{\circ}C$ up to 48 hours. The typical microstructure of heat treated specimens showed the reaction layer of WC at the interface of tungsten wire and the carbon depletion zone between the WC layer and the matrix. During the formation of WC layer, if the carbon supply is insufficient due to the decarburization of matrix or the isolation of matrix by cast-bonded W wires, the reaction layer develops coarse hexagonal crystalline WC. From the microstructural investigation, it was found that the volume of WC layer and the carbon depletion zone increased linearly with the isothermal heat treating time. This results supported that the formation rate of WC in the white cast iron matrix is controlled by the interfacial reaction with a constant reaction rate.

  • PDF

Study on Methane Steam Reforming utilizing Concentrated Solar Energy -Part 1. In search of the best reaction condition for steam reforming of methane- (태양열을 이용한 메탄의 수증기 개질 반응기 연구 -Part 1. 수증기 개질 반응에서의 최적 반응 조건 탐색-)

  • Kim, Ki-Man;Nam, Woo-Seok;Han, Gui-Young;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.13-19
    • /
    • 2005
  • The reaction of steam reforming of methane with commercial catalysts was conducted for thermochemical heat storage. The reaction conditions were investigated for temperature range of 700 to $900\;^{\circ}C$ and steam to carbon mole ratios between 3.0 and 5.0. The reactor was made of stainless steel and it's dimension was 12 cm inside diameter and 6cm long. The effects of space velocity and reactants mole ratio and temperature on the methane conversion and CO selectivity were examined. Optimum reaction condition was determined. There was not a significant difference of methane conversion and CO selectivity compared to conventional reactor.

Effect of Cement Particle Size on Properties of Ordinary Portland Cement (보통 포틀랜드 시멘트 물성에 미치는 시멘트 입도의 영향)

  • Byun, Seung-Ho;Kim, Hyeong-Cheol;Kim, Jae-Young;Choi, Hyun-Kuk;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • This study examined the effects of particle size on characteristics of cement by controlling the particle size of commercial cement. Through a size adjustment, the cement has increasing more of particles that are less than $10{\mu}m$ in size so the initial reaction time has been shortened as a result of improvement in the early hydration reaction. Additionally, it showed a great characteristics of strength from the early age and the initial hydration heat has been increased as well. In the upper and middle parts cements, the initial hydration reaction rate contribution is high with the $10{\mu}m$ compared to original cement. So the initial hydration reaction rate is improved and as a result, it also showed relatively high hydration heat as well. Additionally, adiabatic temperature also showed an increase rate in the results.

The Function of Hydrogen Chloride on Methane-Air Premixed Flame (메탄-공기 예혼합 화염에서 염화수소의 역할)

  • Shin, Sung-Su;Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.979-987
    • /
    • 2005
  • Numerical simulations were performed at atmospheric pressure in order to understand the effect of additives on flame speed, flame temperature, radical concentrations, $NO_x$ formation, and heat flux in freely propagating $CH_4-Air$ flames. The additives were both carbon dioxide and hydrogen chloride which had a combination of physical and chemical behavior on hydrocarbon flame. In the flame established with the same mole of methane and additive, hydrogen chloride significantly contributed toward the reduction of flame speed, flame temperature, $NO_x$ formation and heat flux by the chemical effect, whereas carbon dioxide mainly did so by the physical effect. The impact of hydrogen chloride on the decrease of the radical concentration was about $1.4\~3.0$ times as large as that of carbon dioxide. Hydrogen chloride had higher effect on the reduction of $EI_{NO}$ than carbon dioxide because of the chemical effect of hydrogen chloride. The reaction, $OH+HCl{\rightarrow}Cl+H_2O$, played an important role in the heat flux from flames added by hydrogen chloride instead of the reaction, $OH+H_2{\rightarrow}H+H_2O$ which was an important reaction in hydrocarbon flames.