• Title/Summary/Keyword: Heat load calculation method

Search Result 36, Processing Time 0.026 seconds

Intermittent Heating and Cooling Load Calculation Method -Comparing with ISO 13790

  • Lee, Sang-Hoon
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • College of Architecture, Georgia Institute of Technology, Atlanta, GA, US Abstract The intermittent heating and cooling energy need calculation of the ISO 13790 monthly method was examined. The current ISO 13790 method applies a reduction factor to the continuous heating and cooling need calculation result to derive the intermittent heating and cooling for each month. This paper proposes a method for the intermittent energy need calculation based on the internal mean temperature calculation. The internal temperature calculation procedure was introduced considering the heat-balance taking into account of heat gain, heat loss, and thermal inertia for reduced heating and cooling period. Then, the calculated internal mean temperature was used for the intermittent heating and cooling energy need calculation. The calculation results from the proposed method were compared to the current ISO 13790 method and validated with a dynamic simulation using EnergyPlus. The study indicates that the intermittent heating and cooling energy need calculation method using the proposed model improves transparency of the current ISO 13790 method and draws more rational outcomes in the monthly heating and cooling energy need calculation.

Development of a TFM load calculation program based on thermal response factor (열응답계수를 이용한 TFM 부하계산법의 제안)

  • 최우영;고철균;이재헌;류해성
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.684-691
    • /
    • 1999
  • A load calculation program based on TFM(Transfer function method) has been proposed in this study. The validity of the current method has been verified by comparing heat gain calculation by TRF(Thermal response factor) with that by CTF(Conduction transfer function) adopted in ASHRAE. In addition, it seems that the CTF coefficients given in ASHRAE tables have somewhat ambiguity The load calculation program developed in the current study has been employed to calculate cooling load from the exterior walls and roof of example 6 in the ASHRAE. The results are found in good agreement.

  • PDF

Empirical Analysis on the Cooling Load and Evaporation Efficiency of Fogging System in Greenhouses (온실의 냉방부하 및 포그시스템의 증발효율 실험분석)

  • Nam, Sang-Woon;Seo, Dong-Uk;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • In order to develop the cooling load estimation method in the greenhouse, the cooling load calculation formula based on the heat balance method was constructed and verified by the actual cooling load measured in the fog cooling greenhouse. To examine the ventilation heat transfer in the cooling load calculation formula, we measured ventilation rates in the experimental greenhouse which a cooling system was not operated. The ventilation heat transfer by a heat balance method showed a relatively good agreement. Evaporation efficiencies of the two-fluid fogging system were a range of 0.3 to 0.94, average 0.67, and it showed that they increased as the ventilation rate increased. We measured thermal environments in a fog cooling greenhouse, and calculated cooling load by heat balance equation. Also we calculated evaporative cooling energy by measuring the sprayed amount in the fogging system. And by comparing those two results, we could verify that the calculated and the measured cooling load showed a relatively similar trend. When the cooling load was low, the measured value was slightly larger than calculated, when the cooling load was high, it has been found to be smaller than calculated. In designing the greenhouse cooling system, the capacity of cooling equipment is determined by the maximum cooling load. We have to consider the safety factor when installed capacity is estimated, so a cooling load calculation method presented in this study could be applied to the greenhouse environmental design.

Analysis of the Energy Saving Effect for the External Insulation Construction by Building Load Calculation Method (건물 부하계산 프로그램을 이용한 외단열 시공의 에너지 절감 효과 분석)

  • Park, Jaejoong;Myeong, Jemin;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • Reinforcement of insulation in apartment buildings reduces the heating and cooling energy consumption by lowering the heat transfer in the building envelope. There are differences between internal and external insulation methods in heat transmission properties. However, some building load calculation programs cannot analysis the differences between the two. This is because these programs do no account for the timelag or thermal storage effect of the wall according to the location of insulation. In this study, the heat transmission characteristics of internal and external insulation were analyzed by EnergyPlus, and heating and cooling energy demand was compared. The results showed that external insulation system had lower heating and cooling loads than internal insulation system. Also the heat transfer rate of external insulation is steadier than internal insulation. About 13.6% of heating and cooling energy demand decreased when the outdoor wall was finished with external insulation compared to the demand with internal insulation.

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange (온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.647-657
    • /
    • 2015
  • To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.

Comparative Study of Design Methods for Manufacturing of Steel Structure (철구조물의 설계방법에 대한 비교 연구)

  • Kim, Dong-Kwon;Choi, Jae-Seung;Hwang, Suk-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.357-362
    • /
    • 2000
  • Allowable stress design(ASD) method has been widely used to design steel structures such as boiler and heat recovery steam generator(HRSG) of power plant. However, many researchers are recently intrested in road and resistance factor design(LRFD) method which may take the place of ASD. In this work, the weight calculation of steel structure was compared when ASD and LRFD were applied respectively. For the calculation of weight of steel structure, computer program was developed and applied to obtain beam weight. Using this program and GTSTRUDL, structural design program, weight of steel structure is calculated. As a result of weight calculation, maximum 5.4% of weight reduction is achieved among examples of this study by applying LRFD comparing with the result of ASD, and those results quite dependent on the applied load and member classification.

  • PDF

Validation of Extended Building Heat Transfer Model (건축전열모델의 확장에 관한 연구)

  • 조민관
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.422-431
    • /
    • 2003
  • Theory of the building heat transfer is generally limited to the heat flux to the surfaces of windows and walls, which influences the indoor climate of a building, in the field of architectural environmental engineering. While the heat flux from the buildings to their environment has been considered in the viewpoint of urban climate, its conventional theory have been rarely examined. The purpose of this study is to propose a building-urban heat transfer model for defining the relation between the building and the urban climate by extending the building heat transfer model. In this study, the extended building heat transfer model, where response factor method is used, is established on the urban space and the indoor space by the boundary of building envelopes. Computer simulation (HASP/ACLD) is conducted on the subjected urban area by the established building-urban heat transfer model. As a result it is logically proved that the short waves of solar radiation, which interact with long Waves of radiation from the buildings and the earth, increase the urban air temperature ana buildings largely influence on the urban climate.

Night Purge Evaluation Using the RTS-SAREK in Office Buildings (RTS-SAREK을 이용한 사무용 건물의 나이트 퍼지 성능 평가)

  • Shin, Dongshin;Park, Sungkeun;Park, Youngsoo;Park, Jisu;Lee, Jinyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.633-638
    • /
    • 2015
  • This study evaluates the capacity of night purging in office buildings to reduce the cooling load. RTS-SAREK is used to estimate the performance of night purging on the steady state. To overcome steady state RTS program limitations, we added unsteady heat transfer equations. When the ACH (Air Change per Hour) increases, the wall temperature decreases in both the steady and unsteady states. The unsteady heat transfer rate is different from the steady transfer rate, which validates the unsteady calculation. When ACH is low, the heat transfer rate increases continuously with time. When ACH becomes higher, the heat transfer rate increases and decreases with time. When ACH is quite high, there exists a large difference in the heat transfer rate between the steady and unsteady calculations, which emphasizes the importance of the unsteady calculation.

A Study on the Thermal Design of the 100 hp High Temperature Superconductin (100 마력급 고온초전도 전동기의 열적설계에 관한 연구)

  • Seo, M.G.;Jo, Y.S.;Shon, M.H.;Kim, S.H.;Back,, S.K.;Kwon, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.732-734
    • /
    • 2002
  • The rotor thermal analysis consists of determining the heat load to the rotor, sizing the cryogenic system, and ensuring that the HTS rotor will operate at the design goal of 30 K. The heat load to the rotor is due to heat conduction through the torque tubes, current leads, instrumentation. and radiation from the thermal shield and the end caps. Coil operating temperature is determined from the coil losses and the heat transport to the coolant. An FEM thermal conductivity model is developed to allow calculation of heat transport in HTS field coil according to the heat exchanger shape and coolant feeding method. The losses determine the size of the cryocooler.

  • PDF