• 제목/요약/키워드: Heat from Light

검색결과 495건 처리시간 0.034초

저전력형 LED 보안등의 PWM형 구동제어 특성 개선 (Improvement of PWM Driving Control Characteristics for Low Power LED Security Light)

  • 박형준;김낙철;김인수
    • 전기전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.368-374
    • /
    • 2017
  • 본 연구에서는 220[V] 상용전원을 대체한 태양전지 모듈을 응용하고 등 기구는 할로겐 등이나 나트륨 등을 대체한 LED 조명을 이용한 저전력형 LED 보안등을 개발하였다. 또한 LED 구동제어기의 발열문제와 구동전류를 최소화할 수 있는 PWM형 구동제어회로를 설계하였다. 개발된 시스템에서, 광 효율에 대한 측정값은 93.6 [lm/W] 이고, LED 램프의 발열 제어를 위하여 제어기 내부에 고 정밀 온도센서(TC1047A)를 사용하였다. LED 조명등에서 발생하는 고열을 제거하기 위하여 금속 삽입형 방열 장치를 통하여 대기 속으로 신속하게 다중분산 시키도록 설계하였다. LED 조명등의 발열제어 온도 범위는 $50{\sim}55[^{\circ}C]$였다. LED 보안등의 광속 및 점등 속도는 0.5[sec] 이고 LED 램프의 빔 확산 각도는 높이 6[m]를 기준으로 하는 배광곡선에 의해 약 $110[^{\circ}]$의 빔 각도를 얻었다.

LED 등기구의 발열과 실내온도 상승에 관한 연구 (A Study on the Heat Radiation of LED Luminaires and the Indoor Temperature Increase)

  • 김동건;길경석
    • 한국전기전자재료학회논문지
    • /
    • 제25권9호
    • /
    • pp.738-742
    • /
    • 2012
  • This paper conducted a study on how the heat radiation of light emitting diode(LED) luminaires affects the indoor temperature increase. The effect was compared with that of a 20 W compact fluorescent lamp(CFL) and a 50 W MR16 halogen lamp which are most widely used inside of cruises, a LED downlight and a 4W MR16 LED replacing each of them. We installed a luminarie inside a thermally shielded chamber, measuring the temperature changes under the same volume every 5 minutes and compared the result with theoretically calculated heat radiation. The temperature changes in the chamber was measured four times, on seven hours' period in order to keep sufficient time once the temperature reaches the thermal equilibrium state. The results showed that the temperature of the 20 W E26 CFL and the 10 W LED downlight increased by $21.1^{\circ}C$ and $10.4^{\circ}C$ respectively, while that of the 50 W halogen MR16 and the 4 W LED MR16 increased by $33.9^{\circ}C$ and $4.8^{\circ}C$ respectively. The experimental heat radiation were calculated from the results and the experimental heat radiation of the CFL and the LED downlight were 171.5 cal and 86.5 cal, and those of the halogen MR16 and the LED MR16 were 275.3 cal and 36.5 cal. Therefore, the heat radiation was reduced by 49.5% and 86.7%, respectively, by replacing conventional light source with LED. In conclusion, we can expect a reduction of power consumption in air condition system and the effect on indoor temperature increase by application of LED luminaires.

열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구 (A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal)

  • 유영은;김덕종;윤재성;박시환
    • Design & Manufacturing
    • /
    • 제10권3호
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.

주거용 15W COB LED 다운라이트 방열판 최적설계에 따른 열적 특성 분석 및 평가 (Thermal Characteristics of the Optimal Design on 15W COB LED Down Light Heat Sink)

  • 권재현;박건준;김태형;김용갑
    • 한국정보통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.401-407
    • /
    • 2014
  • 열에 관한 문제를 해결하기 위해 여러 개의 LED 칩을 1개의 보드에 밀집으로 배열한 COB(Chip On Board)에 관한 관심이 증가하고 있다. LED소자의 온도가 올라갈수록 수명이 감소하고 스펙트럼선의 파장이 본래의 파장보다 장파장 쪽으로 이동하는 적색 이동 현상 및 접합부 온도 상승에 따라 광 출력이 감소되는 큰 문제점이 대두되고 있다. 이러한 열 문제점을 해결하기위해 본 논문에서는 최적의 Fin 두께와 길이를 선정하여 15W급 COB LED 최적의 2차 방열판을 설계하고, 그 설계한 방열판과 15W COB를 패키지하여 Solid Works Flow Simulation을 통한 열적 특성을 분석하여 제작된 15W COB 다운라이트 방열판을 접촉식 온도계를 사용해 열적 특성, 키슬리 2430을 통한 전기적 특성을 분석하였다.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • 제39권4호
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

멀티-핀을 갖는 LED 패키지 방열장치의 동작특성 (Operating Characteristics of LED Package Heat-sink with Multi-Pin's)

  • 최훈;한상보;박재윤
    • 조명전기설비학회논문지
    • /
    • 제28권7호
    • /
    • pp.1-12
    • /
    • 2014
  • This paper is proposed to design the new heat-sink apparatus for improving the heat transfer characteristics in the power LED chip, and results of the operation characteristics were discussed. The core design is that the soldering through-hole on the FR-4 PCB board is formed to the effective heat transfer. That is directly filled with Ag-nano materials, which shows the high thermal conductivity. The heat transfer medium consisting of Ag-nano materials is classified into two structures. Mediums are called as the heat slug and the multi-pin in this work. The heat of the high temperature generated from the LED chip was directly transferred to the heat slug of the one large size. And the accumulated heat from the heat slug was quickly dissipated by the medium of the multi-pin, which is the same body with the heat slug. This multi-pin was designed for the multi-dissipation of heat by increasing the surface areas with a little pins. Subsequently, the speed of the heat transfer with this new heat-sink apparatus is three times faster than the conventional heat-sink. Therefore, the efficiency of the illuminating light will be improved by adapting this new heat-sink apparatus in the large area's LED.

Mathematical Description and Prognosis of Cell Recovery after Thermoradiation Action

  • Komarova, Ludmila N.;Kim, Jin-Kyu;Petin, Vladislav G.
    • 환경생물
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2008
  • A mathematical model for the synergistic interaction of physical and chemical environmental agents was suggested for quantitative prediction of irreversibly damaged cells after combined exposures. The model took into account the synergistic interaction of agents and was based on the supposition that additional effective damages responsible for the synergy are irreversible and originated from an interaction of ineffective sublesions. The experimental results regarding the irreversible component of radiation damage of diploid yeast cells simultaneous exposed to heat with ionizing radiation ($^{60}Co$) or UV light (254 nm) are presented. It was shown that the cell ability of the liquid holding recovery decreased with an increase in the temperature, at which the exposure was occurred. A good correspondence between experimental results and model prediction was demonstrated. The importance of the results obtained for the interpretation of the mechanism of synergistic interaction of various environmental factors is discussed.

경량 단조 피스톤 기술 개발 (Development of Forged Piston for Weight-Reduction)

  • 홍은지;강희삼
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.111-115
    • /
    • 2017
  • This forged piston is proposed with a lighter weight and higher durability than a gravity casting piston for gasoline engines. However, a forged piston is very difficult to develop and mass-produce due to lack of basic technologies such as design, material and forging technique. First, we benchmarked existing forged pistons according to database design parameters. Second, we evaluated two solidification processes, continuous casting and spray forming, to produce heat-resistant alloy billets for forging. The spray forming process gives better mechanical properties at all temperatures, particularly at elevated temperatures except when poor formability is present. We used DEFORM simulation to determine the optimum process condition with billet from spray forming and successfully commercialized it with LF Sonata HEV.

LIE와 PIV 기법을 이용한 부력제트의 온도장과 속도장 동시측정 (Simultaneous Measurements of Temperature and Velocity Fields of a Buoyant Jet Using LIE and PIV Techniques)

  • 김석;장영길;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.513-516
    • /
    • 2002
  • The flow structure and heat transfer characteristics of a turbulent buoyant jet were investigated experimentally. The instantaneous temperature and velocity fields in the near field were measured using a two-frame PIV and PLIF techniques. A thin light sheet illuminated a two-dimensional cross section of the buoyant jet in which Rhodamine B was added as a fluorescent dye. The intensity variations of LIF signal from Rhodamine B molecules scattered by the laser light were captured by a CCD camera after passing an optical filter. By ensemble averaging the instantaneous temperature and velocity fields, the mean temperature and velocity fields as well as the spatial distributions of turbulent statistics were obtained. The results show the flow structure and convective heat transfer of the developing shear layer in the near field.

  • PDF

LED 조명등 히트싱크 형상과 배열에 따른 방열특성에 관한 연구 (A Study on the radiant Heat Characteristic According to Type and Array of LED Lighting Heatsink)

  • 장현;서정세;이중섭
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.54-60
    • /
    • 2013
  • Numerical analysis of the radiant heat characteristic around heatsink according to arrangement and shape of fin on 60W-LED lamp is conducted in this study. In the case of top blow blowing from upper side on LED lamp, there is just little difference in cooling characteristics according to the height of fin. On the other hand, the fin arranged side by side has the advantage of heat transfer enhancement by comparing with zig-zag type because it leads to more loss of flow. In case of making fin round to increase the amount of heat transfer, designing arrangement with the minimized loss of flow has the advantage of characteristic.