• Title/Summary/Keyword: Heat exchanging system

Search Result 47, Processing Time 0.027 seconds

A Study on the Formation of Fouling in a Heat Exchanging System for HAN-River Water as Cooling Water (냉각수로 하천수를 이용하는 열교환 시스템내 Fouling 형성에 관한 연구)

  • Sung, Sun-Kyung;Suh, Sang-Ho;Roh, Hyung-Woon;Cho, Young-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1473-1478
    • /
    • 2003
  • Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of HAN river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of HAN-river water is higher than that of tap water in Seoul.

  • PDF

Analyses of Fouling Mechanism using Visualization Techniques in a Lab-scale Plate-Type Heat Exchanging System (실험실용 판형 열교환 시스템에서 가시화를 이용한 파울링 기구 해석)

  • 성순경;서상호;노형운
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.349-354
    • /
    • 2004
  • Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When the scale deposits in a heat exchanger surface, it is conventionally called fouling. The objective of the present study is to analyze the process of the fouling formation in a heat exchanger according to different types of water using visualization techniques. In order to experimentally investigate the formation of the fouling, this study built a lab-scaled heat exchanging system. Using the visualization techniques of Scanning Electron Microscopy (SEM) and X-Ray diffraction method, the three dimensional configurations of the fouling formation could be successfully obtained. Based on the experimental results, it was found that the configurations of the fouling formation were different when using tap water compared to river water.

A Comparative Study on the Fouling Characteristics of River and Tap Water in a Heat Exchanging Model (열교환기 모델내 하천수와 시수의 Fouling 특성 비교)

  • Sung, Sun-Kyung;Suh, Sang-Ho;Roh, Hyung-Woon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.49-54
    • /
    • 2003
  • Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanging surface, it is traditionally called fouling. The objective of the present study was to compare the fouling characteristics of river and tap water in a heat exchanging model. FromtheSEM analyses for tap water the $calciteformofCaCO3_{3}$ was formed. For river water, however, the $aragoniteCaCO_{3}$ wasformed.In order to investigate velocity effects on the fouling characteristics in the heat exchanging model, the inlet velocity was varied with 0.5, 1.0 and 1.5 m/s, respectively. The fouling characteristics of river water were quite different from those of tap water. For the case of the 'velocity of 1.5m/s', the overall heat transfer coefficient was reduced up to 26% than that of the 'velocity of 0.5m/s'

  • PDF

A Study on the Formation of Fouling in a Heat Exchanging System for River Water (하천수를 이용하는 열교환 시스템 내 파울링 형성에 관한 연구)

  • Sung, Sun-Kyung;Suh, Sang-Ho;Roh, Hyung-Woon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.646-651
    • /
    • 2004
  • When the water flowing inside of the heat transfer equipments such as heat exchangers, condensers, and boilers is heated, calcium, magnesium sulfate, and other minerals in the water are deposited and built up for scales on the heat transfer surfaces. When those scales accumulate on the heat transfer surfaces, their performance of the heat transfer become progressively reduced due to the increase of the heat transfer resistance. The mechanism of this reduced heat transfer is called fouling. This study investigated the formation of the fouling in a heat exchanger with river and tap water flowed inside of it as a coolant. In order to visualize the formation of the fouling and to measure the fouling coefficients, a lab-scale heat exchanging system was used. Based on the experimental results, it was found that the formation of fouling for river water was quite different with the formation for tap water.

Effect of Fouling Mitigation for Ceramic Ball in Cooling Water System of Heat Exchanger (열교환장치의 냉각수 계통에서 세라믹 볼의 파울링 저감효과)

  • Suh, Sang-Ho;Sung, Sun-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.330-334
    • /
    • 2007
  • The objective of this study was to investigate the effecs of fouling mitigation for ceramic ball in cooling water system experimentally. The devices filled with ceramic balls were connected to the bypass line of the heat exchanging system. Cooling water in the heat exchanging system was artificial water. To visualize the formation of fouling on the heat transfer surface a number of images were obtained using a CCD camera with real-time microscopy. Fouling resistances and overall heat transfer coefficients were measured in order to analyze fouling mitigation effects. We found that the ceramic ball devices for artificial water reduced the formation of fouling compared to the no-mitigation devices.

Comparision of Heat Exchanging Performance Depending on Different Arrangement of Heat Exchanging Pipe (II) (열회수장치의 열교환 파이프배치형식별 열교환 성능 비교(II))

  • Suh, Won-Myung;Kang, Jong-Guk;Yoon, Yong-Cheol;Kim, Jung-Sub
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared for the comparison of heat recovery performance; AB-type(control unit) is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types(C-type and D-type) modified from the control unit are different in the aspects of airflow direction(U-turn airflow) and pipe arrangement. The results are summarized as follows; 1. In the case of Type-AB, when considering the initial cost and current electricity fee required for system operation, it is expected that one or two years at most would be enough to return the whole cost invested. 2. Type-C and Type-D, basically different with Type-AB in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than $25\;m^{3}/min$. Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This is assumed to be that air flow resistance in high air capacity reduces the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate in Type-C and Type-D were improved by about 5% and 13%, respectively. 3. Desirable blower capacity for these heat recovery units experimented are expected to be about $25\;m^{3}/min$, and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it is recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., are required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

  • PDF

Study on the flow characteristics and heat transfer enhancement on flat plate in potential core region of 2-dimensional air jet (포텐셜 코어내에 설치된 충돌평판상의 열전달증진 및 유동특성에 관한 연구)

  • 이용화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.193-201
    • /
    • 1998
  • A heat exchanging system employing the impinging air jet is still widely used In the various fields due to its inherent merits that include the easiness in engineering applications and the high heat and/or mass transfer characteristics. The purpose of this study is to investigate the enhancement of heat transfer and flow characteristics by placing a turbulence promoters in front of heat exchanging surface. In this study, a series of circular rods are placed at the upstream of a flat plate heat exchanger that is located at potential core region(H/W=2) of a two-dimensional impinging air jet. Heat transfer enhancement is achieved by inserting turbulence promoter that results in the flow acceleration and disturbance of boundary layer. The average Nusselt number of the flat plate with the turbulence promoters is found to be around 1.42 times higher than that of the flat plate without the turbulence promoters. Based on the results of flow visualization with a smoke wire, it is confirmed that the heat transfer enhancement is caused by the flow separation and disturbance of boundary layer by inserting the turbulence promoter.

  • PDF

Development of induction heating superheater system using new heat exchanging method (새로운 열교환 방식을 이용한 유도가열 과열증기 발생장치 개발)

  • Sul, Yong-Tae;Lee, Eui-Yong;Kwon, Hyuk-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.740-746
    • /
    • 2009
  • Two step serial load induction superheater has been proposed using resonance type induction heat method in this paper. Heat method is a type of flowing the electron induction and current to special alloy heater in body from external heat coil with non-contact method. Inverter was a full bridge serial load resonance type and inductor was used as load in LC resonance design to maximize the efficiency. The developed system is a new heat exchanging method combined with electromagnetic induction heater and fluid movement, ana very accurate to control of heating the gas, liquid and evaporated mass, so on without combustion process.

Study on Heat Recovery System using Waste Biomass (폐 바이오매스를 이용한 폐열 회수 열교환기에 관한 연구)

  • 이충구;이세균;이계복;이석호;김정현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.514-521
    • /
    • 2004
  • Waste heat recovery system was studied numerically and experimentally. Heat exchanger system was designed specially to obtain the optimum heat exchanging performance. Brushwood biomass was used for the present experimental study. Two biomass heat recovery systems were designed and developed. Polyethylene helical pipe line of 0.03 m (inner diameter) was installed to recover the heat of biomass dump. The fermentation process of biomass dump was maintained for 12 weeks. The inner average temperature of biomass was about 51$^{\circ}C$ for both hot exchanger systems. The current heat recovery system could recover up to 6 ㎉/kg of energy.

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열교환 성능 분석(농업시설))

  • 서원명;강종국;윤용철;김정섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.333-339
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas funnel connected to combustion chamber of greenhouse heating system. The experiment heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas funnel, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amount by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air pipes and exhaust air passages crossing the pipes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through funnels.

  • PDF