• Title/Summary/Keyword: Heat exchanger tube

Search Result 777, Processing Time 0.022 seconds

Experimental Studies on Swirling Flow in a Vertical Circular Tube

  • Chang, Tae-Hyun;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.907-913
    • /
    • 2011
  • Swirling flows are related to the spiral motion in the tangential direction in addition to the axial and radial direction using several swirl generators. These type of flows are used in combustion chambers to improve flame stability, heat exchanger to enhance heat transfer coefficients, agricultural spraying machines and some vertical pipes to move slurries or transport of materials. However, only a few studies three dimensional velocity profiles in a vertical pipe have been reported. In this present paper, 3 dimension particle image velocimetry(PIV) technique was employed to measure the velocity profiles in water along a vertical circular pipe with Reynolds number from 6000 to 13,000. A tangential inlet condition was used as the swirl generator to produce the required flow. The velocities were measured with swirling flow in the water along the test section using the PIV technique.

MULTI-SCALE THERMAL-HYDRAULIC ANALYSIS OF PWRS USING THE CUPID CODE

  • Yoon, Han Young;Cho, Hyoung Kyu;Lee, Jae Ryong;Park, Ik Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.831-846
    • /
    • 2012
  • KAERI has developed a two-phase CFD code, CUPID, for a refined calculation of transient two-phase flows related to nuclear reactor thermal hydraulics, and its numerical models have been verified in previous studies. In this paper, the CUPID code is validated against experiments on the downcomer boiling and moderator flow in a Calandria vessel. Physical models relevant to the validation are discussed. Thereafter, multi-scale thermal hydraulic analyses using the CUPID code are introduced. At first, a component-scale calculation for the passive condensate cooling tank (PCCT) of the PASCAL experiment is linked to the CFD-scale calculation for local boiling heat transfer outside the heat exchanger tube. Next, the Rossendorf coolant mixing (ROCOM) test is analyzed by using the CUPID code, which is implicitly coupled with a system-scale code, MARS.

Characteristic Analysis of Condensate Carry-Over According to the Surface Tensions in the Wet and the Dry Conditions on the Fin Surfaces of Heat Exchangers

  • Kim, Byeung-Gi;Lee, Su-Won;Ha, Sam-Chul;Ahn, Young-Chull;Lee, Jae-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1942-1949
    • /
    • 2006
  • Typically, condensate forms as droplets on the fin surfaces and may bridge the space between the fin surfaces. This is due to the dry characteristics inherent to the fin surface. The droplets increase the air-side pressure drop. In the case of high air velocities, these droplets may be blown off the fins and entrained in the air stream. To minimize the formation of condensate droplet, the wet ability of the fins must be improved. The carry-over velocity is affected by fin surface characteristics. To avoid carry-over in the air conditioner having the highest air velocity of 1.5 m/sec, the dynamic contact angle (DCA) should be at least lowly under $60^{\circ}$.

Dynamic Analysis of Evaporator for Optimum Control in Refrigeration System (냉동사이클의 최적 제어를 위한 증발기 동특성 해석)

  • Jeong, S.K.;Hua, Li;Choi, K.H.;Yoon, J.I.;Kim, E.P.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.82-88
    • /
    • 2005
  • This paper presents numerical study on dynamic characteristics of evaporator to control evaporator superheat and compressor capacity with optimum condition in refrigeration system. It is very important to reduce energy consumption and to keep room temperature within a very restricted range with minimum oscillation in some special applications of the refrigeration system. Heat exchange is mainly happened in the evaporator. So, making mathematical model of evaporator and analyzing evaporator characteristics are necessary in order to control the superheat and the capacity of the system. A mathematical model based on the one dimensional partial differential equations representing mass and energy conservation and a tube-wall energy is described. A set of ordinary differential equation is formulated by integrating separately over the two regions(two-phase and vapor) generally presented in a heat exchanger.

  • PDF

Development of 2-dimensional model for thermal comfort in train (철도 차량 온열 쾌적성에 관한 2차원 모델 개발)

  • Yeon, Bong-Joon;Kim, Moon-Uhn;Kim, Man-Hoe
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.9-16
    • /
    • 2007
  • This study aims to suggest an evaluation method of thermal environment using CFD, not an experiment, which is usual in the field. Model train is the newly introduced Mugunghwa train. Since its compartment occupies a large space and chairs and other accessories make it a complicated structure, 3-D calculation might take too much time and effort to make evaluation itself possible. Therefore, we suggest a 2-D model to replace the original 3-D model for averaged temperature and temperature distribution in the cabin.

  • PDF

Numerical Analysis of Freezing Phenomena of Water around the Channel Tube of MF Evaporator (MF증발기 채널관 주위의 결빙현상에 대한 해석적 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.114-120
    • /
    • 2020
  • In this study, the process of freezing around two consecutively arranged channel tubes used for evaporator heat exchange was numerically investigated. Numerical results confirmed that the vortex occurred between the front channel and the rear channel and also that the vortex occurred due to the rapid change of the channel at the rear of the rear channel. These vortices were found to play a role in reducing the ice layer to some extent by the growth of the ice layer at the front and rear of the channel tube. The freezing layer showed a tendency to gradually increase as it passed through the channel pipe. As the wall temperature in the channel pipe decreased, the thickness of the freezing layer increased. As the flow rate of water slowed, the thickness of the freezing layer became thicker. In particular, in the case of a slow flow rate of 0.03 m/s, the freezing layers of the front channel pipe and the rear channel pipe were connected to each other. The narrower the channel, the thinner the freezing layer was in both the front and rear channel tubes. It is found that these thin freezing layers are caused by the low thickness of the temperature boundary layer formed around the channel tube.

Experimental study on the performance improvement of a screw-compressor-type chiller (스크류 압축식 냉동기의 성능향상에 관한 실험적 연구)

  • Lee, D.-Y.;Jung, S.-H.;Kang, B.H.;Hong, H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.48-60
    • /
    • 1999
  • An experimental study on the performance enhancement of a screw-compressor-type chiller with 100kW of nominal cooling capacity has been carried out. Performance test facility was developed to investigate the effects of a partial modification from the existing chiller on the performance. By replacing the existing shell-and -tube heat exchangers with plate heat exchangers, the cooling capacity is increased by 15~18% and the COP is also increased by 19~21% depending on the operation temperature range. Charging mixed refrigerant R22/R142b(80 : 20) instead of R22 into the chiller with plate heat exchangers improves the cooling capacity by 4% and the COP very largely by 30%. Each contribution of the plate evaporator, plate condenser, and mixed refrigerant to the performance enhancement is examined by analyzing the refrigeration cycle and the heat transfer processes. It is also shown that the chiller performance can be improved by adapting 2-stage-compression cycle using an economizer.

  • PDF

Daily Heating Performance of a Ground Source Multi-heat Pump at Heating Mode (지열원 물대공기 멀티 히트펌프의 일일 난방 운전 특성에 관한 실증 연구)

  • Choi, Jong-Min;Lim, Hyo-Jae;Kang, Shin-Hyung;Moon, Je-Myung;Kim, Rock-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.527-535
    • /
    • 2009
  • The aim of this study is to investigate the daily heating performance of ground source multi-heat pump system with vertical single U-tube type GLHXs, which were installed in a school building located in Cheonan. Daily average COP of heat pump unit on Jan. 12th, 2009 at heating mode was lower than it on Nov. 10th, 2008 and Dec. 15th, 2008, because of lower EWT of the outdoor heat exchanger and relatively smaller size of condenser and evaporator. But, the system COP on the former was higher than it on the latter because ground loop circulating pump was operated in rated speed. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load change have to be developed in order to enhance the performance of the system COP.

A fouling mitigation device for a wastewater heat recovery heat pump system using a bubbling fluidized bed with cleaning sponge balls (버블 유동층과 세정 볼을 이용한 폐수 열원 히트펌프 시스템 증발기의 관 외측 오염 저감 장치에 관한 연구)

  • Kim, Jong-Soo;Kim, Do-Bin;Kim, Jun-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.152-156
    • /
    • 2016
  • Wastewater heat recovery heat pump systems use heated wastewater from public baths or factories as the heat pump's heat source. Generally, this system uses a bare tube evaporator. In the heat transfer process from wastewater to refrigerant, thermal resistance is caused primarily by fouling deposits on the outside surface of tube. Fouling directly increases thermal resistance and decreases heat pump efficiency. Thus, it is desirable to eliminate fouling. In this study, we fabricated a fouling mitigation device using a bubbling fluidized bed with cleaning sponge balls in the wastewater bath. Experimental conditions were as follows: $20^{\circ}C$ cold-water temperature, $40^{\circ}C$ wastewater temperature, 100 L/h cold water flow rate, and $0.161m^2$ heat exchanger surface area. Experimental results showed that the thermal resistance of fouling decreased by 56% with the fluidized bed alone and by 86% with both the fluidized bed and cleaning sponge balls.

A Study on Flow Characteristic due to the Periodic Velocity Fluctuation of Upstream at Single Tube (단일 원관에서 전방류의 주기적인 속도 변동에 따른 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.613-618
    • /
    • 2019
  • The flow-induced vibration in a heat exchanger may cause the damage to piping. Therefore, it is necessary to establish the flow induced vibration characteristics for the structural stability of a heat exchanger. The purpose of this study was to compare the generation, development, and separation characteristics of a vortex around a circular tube with respect to time when the flow velocity of the inlet was fluctuating constantly and periodically. The time characteristics of lift and drag and the PSD characteristics were also investigated. In the case of a constant inlet flow velocity, the well-known Kalman vorticity distribution was shown. The vortex generation, growth, and separation were also observed alternately at the upper and lower sides of the tube. In the case of periodic inlet flow velocity, the vortex occurred simultaneously in the upper and lower sides of the tube. In the case of constant inlet flow velocity, the magnitude of the lift PSD was 500 times larger than that of drag. The frequency was 31.15 Hz and that of drag was doubled at 62.3 Hz. In case of a periodic inlet flow velocity, the PSD of the drag was approximately 500 times larger than that of lift. The frequency was 15.57 Hz, which was the same as the inlet-flow velocity frequency. In addition, the frequency of lift was 31.15 Hz, which was the same Karman vortex frequency.