• Title/Summary/Keyword: Heat exchanger design

Search Result 684, Processing Time 0.033 seconds

The Study on the Corrosion Characteristics of Al-Alloy Shell for Cooler (알루미늄합금 원통냉각기의 부식 특성에 관한 연구)

  • 임우조;김성진;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.152-157
    • /
    • 2003
  • Most Recently, with rapid development in marine industries such as marine structures and ship, there occurs much interest in the study of corrosion characteristics which play an important role in design of cooling water system like heat-exchanger. Especially, as operating environment of fresh cooling water system in vessels is acidified, this system is seriously corroded. In this study, to study on the corrosion characteristics of Al-alloy shell for cooler, the electrochemical polarization test of materials for the marine fresh water cooler such as Al-alloy, Cu and naval brass was carried out in fresh water. And thus the polarization resistance and anodic polarization behavior of Al-alloy, Cu and naval brass are investigated. Also, galvanic corrosion characteristics of Al-alloy coupled with Cu and naval brass is considered. The main results obtained are as follows ; (1) The current density of corrosion is high in order of Al-alloy > naval brass > Cu (2) As anodic potential increases, the corrosion resistance of naval brass is better than that of Cu. (3) The galvanic corrosion of Al-alloy coupled with Cu and naval brass is activated than corrosion of Al-alloy.

A Study on the Thermal Characteristics of Vacuum Membrane Distillation Module (VMD 모듈의 열성능 특성 연구)

  • Joo, Hong-Jin;Yang, Yong-Woo;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.23-31
    • /
    • 2014
  • This study was accomplished to get the foundation design data of VMD(Vacuum Membrane Distillation) system for Solar Thermal VMD plant. VMD experiment was designed to evaluate thermal performance of VMD using PVDF(polyvinylidene fluoride) hollow fiber hydrophobic membranes. The total membrane surface area in a VMD module is $5.3m^2$. Experimental equipments to evaluate VMD system consists of various parts such as VMD module, heat exchanger, heater, storage tank, pump, flow meter, micro filter. The experimental conditions to evaluate VMD module were salt concentration, temperature, flow rate of feed sea water. Salt concentration of feed water were used by aqueous NaCl solutions of 25g/l, 35g/l and 45g/l concentration. As a result, increase in permeate flux of VMD module is due to the increasing feed water temperature and feed water flow rate. Also, decrease in permeate flux of VMD module is due to increasing salinity of feed water. VMD module required about 590 kWh/day of heating energy to produce $1m^3/day$ of fresh water.

A Study on the Spray Freeze Dryer for Extracting Valuable Material of the Deep Seawater (해양심층수 물질추출용 분무동결건조기에 관한 연구(1))

  • PARK SEONG-JE;HONG YONG-JU;KIM HYO-BONG;KIM HYEON-JU;SHIN PHIL-KWON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1-6
    • /
    • 2004
  • This paper shows the study on the design and another applications of the spray-freeze dryer for the production of valuable material powders. Powder production and handling has been an integral part of material extracting processing and pharmaceutical processing because of the wide use of oral dosage forms. There are a few commonly used powder preparation methods including mechanical milling, precipitaion, spray drying, freeze drying, and so on. In general, methods available for preparing inhalation powders are limited due to certain inhalation powder's sensitive nature to the processing environments. This is particularly true for preparing dry powder aerosols where the aerodynamic particle size($<5{\mu}m$) and the size distribution are pivotal. Supercritical fluid antisolvent and spray freeze drying have recently emerged as promising techniques for producing powders for use in microcapsulation. However, the aerosol applications of these powders are yet to be explored. The purpose of this study is to test the feasibility of using spray freeze-dried valuable material powders for aerosolization.

  • PDF

A Study on a Microchannel Condenser in a R410A A/C System (R410A 냉방시스템의 마이크로채널 응축기에 관한 연구)

  • Park, Chang-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.221-226
    • /
    • 2008
  • A microchannel condenser as a part of a R410A residential air-conditioning system was examined experimentally and numerically in this study. The system was operated in separate environmental chambers and its performance was measured in ARI A, B, and C conditions. A numerical model for the microchannel condenser was developed and its results were compared with the experimental results. The model simulated the condenser with the assumption of the uniform air and refrigerant distribution, and with the consideration of the non-uniform air distribution at the face of the condenser and refrigerant distribution in the headers. In order to consider the non-uniform air distribution, air velocity contours were generated from the measured local air velocities at the face of the condenser. The simulation results showed that the effect of the air and refrigerant distribution was not a significant parameter in predicting the capacity of the microchannel condenser which was experimentally examined in this study. The comparison of the calculated and experimental results showed that the condenser capacity could be predicted well for every test condition. However, the prediction of refrigerant pressure drop deviated significantly from the measured values.

  • PDF

Study of Tube Expansion to Produce Hair-Pin Type Heat Exchanger Tubes using the Finite Element Method (유한요소법을 이용한 헤어핀 형 열 교환기의 튜브 확관에 대한 연구)

  • Hong, S.;Hyun, H.;Hwang, J.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.164-170
    • /
    • 2014
  • To predict the deformation and fracture during tube expansion using the finite element (FE) method, a material model is considered that incorporates the damage evolution due to the deformation. In the current study, a Rice-Tracey model was used as the damage model with inclusion of the hydrostatic stress term. Since OFHC Cu is not significantly affected by strain rate, a Hollomon flow stress model was used. The material parameters in each model were obtained by using an optimization method. The objective function was defined as the difference between the experimental measurements and FE simulation results. The parameters were determined by minimizing the objective function. To verify the validity of the FE modeling, cross-verification was conducted through a tube expansion test. The simulation results show reasonable agreement with the experiments. The design for a minimum diameter of expansion tube using the FE modeling was verified by a simplified tube expansion test and simulation results.

PILLAR: Integral test facility for LBE-cooled passive small modular reactor research and computational code benchmark

  • Shin, Yong-Hoon;Park, Jaeyeong;Hur, Jungho;Jeong, Seongjin;Hwang, Il Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3580-3596
    • /
    • 2021
  • An integral test facility, PILLAR, was commissioned, aiming to provide valuable experimental results which can be referenced by system and component designers and used for the performance demonstration of liquid-metal-cooled, passive small modular reactors (SMRs) toward their licensing. The setup was conceptualized by a scaling analysis which allows the vertical arrangements to be conserved from its prototypic reactor, scaled uniformly in the radial direction achieving a flow area reduction of 1/200. Its final design includes several heater rods which simulate the reactor core, and a single heat exchanger representing the steam generators in the prototype. The system behaviors were characterized by its data acquisition system implementing various instruments. In this paper, we present not only a detailed description of the facility components, but also selected experimental results of both steady-state and transient cases. The obtained steady-state test results were utilized for the benchmark of a system code, achieving a capability of accurate simulations with ±3% of maximum deviations. It was followed by qualitative comparisons on the transient test results which indicate that the integral system behaviors in passive LBE-cooled systems are able to be predicted by the code.

Numerical Analysis on the Thermal Design of a Heat Exchanger for a Cold & Hot Water Mattress Equipped with Thermoelectric Modules (열전소자가 적용된 냉·온수 매트용 전열 모듈의 기초 열설계에 관한 수치해석적 연구)

  • Yang, Ho-Dong;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.113-121
    • /
    • 2021
  • In this study, the thermal characteristics of cold and hot water mattress units equipped with thermoelectric modules were investigated via numerical analyses. Cold and hot water mattress products that are currently in existence use manual methods requiring refrigerants to be added to the hot water boiler. However, the cold and hot water mattress units using thermoelectric modules can provide improved efficiency via energy savings and actively resolving environmental pollution problems. To determine the efficiency of the thermoelectric module, the mattress was modeled and its efficiency was analyzed for the cooling and heating processes using two 100-W-class and one 200-W-class thermoelectric modules, respectively. From the results of this study, it was confirmed that when two 100-W-class modules were used, the application area was larger than when a single 200-W-class module was used, with uniform temperature distribution and improved performance compared to existing products in terms of electrical energy.

Optimization of an extra vessel electromagnetic pump for Lead-Bismuth eutectic coolant circulation in a non-refueling full-life small reactor

  • Kang, Tae Uk;Kwak, Jae Sik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3919-3927
    • /
    • 2022
  • This study presents an optimal design of the coolant system of a non-refueling full-life small reactor by analyzing the space-integrated geometrical and electromagnetic variables of an extra vessel electromagnetic pump (EVEMP) for the circulation of a lead-bismuth eutectic (LBE) coolant. The EVEMP is an ideal alternative to the thermal-hydraulic system of non-refueling full-life micro reactors as it possesses no internal structures, such as impellors or sealing structures, for the transportation of LBE. Typically, the LBE passes through the annular flow channel of a reactor, is cooled by the heat exchanger, and then circulates back to the EVEMP flow channel. This thermal-hydraulic flow method is similar to natural circulation, which enhances thermal efficiency, while providing a golden time for cooling cores in the event of an emergency. When the forced circulation technology of the EVEMP was applied, the non-refueling full-life micro reactor achieve an output power of 60 MWt, which is higher than that achievable via the natural circulation method (30 MWt). Accordingly, an optimized EVEMP for Micro URANUS with a flow rate of 4196 kg/s and developed pressure of 73 kPa under a working temperature of 250 ℃ was designed.

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

Design and Construction of a Bottoming Organic Rankine Cycle System for an Natural Gas Engine (가스엔진용 유기랭킨사이클의 설계 및 제작)

  • Lee, Minseog;Baek, Seungdong;Sung, Taehong;Kim, Hyun Dong;Chae, Jung Min;Cho, Young Ah;Kim, Hyoungtae;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2016
  • ORC system was designed and constructed for utilizing the heat of the exhaust gas and coolant released from the gas engine which was modified to use natural gas as a fuel. In this paper the components of the ORC system were designed and manufactured based on measured data of the gas engine. The components are composed of two plate heat exchanger, the 5kW-class expander and multi stage centrifugal pump. The thermodynamic performance of the ORC system was analyzed by using the electric heater. Also, the developed ORC system was implemented to modified natural gas engine. Two gas engines were used to supply heat to the ORC system. As a result of test bench, when the heat source temperature is $110^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 5.22kW, 7.41, 9.09%. As a result of field test, when the heat source temperature is $86^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 2kW, 3.75, 6.45%.