• Title/Summary/Keyword: Heat exchanger, Pressure drop

Search Result 398, Processing Time 0.035 seconds

Test of The HTS Power Cable Cooling System (초전도케이블 냉각시스템의 냉각특성 시험)

  • 염한길;고득용;김익생;김춘동;김도형
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.281-283
    • /
    • 2003
  • High temperature superconducting power cable requires forced flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65K and 80K. Subcooler heat exchanger uses saturated liquid nitrogen boiling on the shell side to subcool the circulating liquid nitrogen stream that cools the HTS cable. The paper describes performance tests of the cooling system. The test items are heat exchanging performance of subcooler. pressure drop between supply and return lines, heat transfer coefficient inside former, cable cryostat heat leak and simulation of electrical load of HTS cable.

  • PDF

Separate type heat pipe performance comparison by the heat exchanger shapes (열교환기 형상에 따른 분리형 히트파이프 성능 비교)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.723-729
    • /
    • 2016
  • This study compared fin-tube and parallel-flow heat pipes for their sensible heat exchange rate, heat recovery amount, and air-side pressure drop. Tests were done with different refrigerant charging rates of 40-60% vol. and air flow rates of 300-1,400. The sensible heat exchange rate was highest for both types of heat pipes at a working fluid charge of 40% vol. and low flow rate. For the parallel-flow heat pipe, the 60% vol. charge is too high and results in a low sensible heat exchange rate. The reason is that the thicker liquid film of the tube wall deteriorates the heat transfer effect. Hence, the optimal charging rate is 40 to 50% vol. The evaporator heat pipe has a larger air-side pressure drop than the condenser section heat pipe. The reason is considered to be condensation water arising from the evaporator surface. Compared to the fin-tube heat pipe, the parallel-flow heat pipe showed better performance with a working fluid charging rate of 48%, volume of 41%, and an air-side pressure drop about 37%.

Performance Analysis of Refrigeration System Using the CFC-Alternative and Scroll Compressor (CFC-대체냉매와 스크롤압축기를 사용한 냉동시스템 성능해석)

  • Pak, H.Y.;Park, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.366-381
    • /
    • 1995
  • A performance analysis of refrigeration system using the HFC-134a and scroll compressor is performed numerically. The refrigeration system mainly consists of various standard components such as heat exchanger, compressor, and expansion device. The model for heat exchanger performance is based on a tube-by-tube method which is analyzed separately by considering the cross-flow heat transfer with the outdoor air flow and pressure drop. Compressor is used the scroll-type compressor which has many merits such as high efficiency, low noise and vibration, and small in size. Short-tube is included as an expansion device. Vapour and liquid line are also considered for the performance analysis of refrigeration system. Using the modeling of various components of refrigeration system, a performance comparison of CFC-12 and HFC-134a is performed numerically for the various outdoor air temperature and various values of short-tube diameter. As the results of this study, the refrigeration system performance decreases as the outdoor air temperature increases. And the optimum short-tube diameter based on COP is 1.37mm for this system.

  • PDF

Performance Characteristics of Plate Heat Exchangers with Various Geometric Design Parameters (기구적 설계변수에 따른 판형열교환기의 성능특성)

  • Son, Jae-Wook;Lee, Eung-Chan;Kang, Hoon;Kim, Yong-Chan;Kim, Jung-Kyu;Cho, Sung-Youl;Park, Jae-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.583-591
    • /
    • 2012
  • Plate heat exchangers have been widely used in many industrial applications because of their compactness and high efficiency. Even though plate heat exchangers have been investigated extensively, studies on the effects of geometric parameters other than the chevron angle are very limited in the open literature. In this study, the effects of the chevron angle, corrugation length, corrugation depth, and the number of plates on the heat transfer and pressure drop characteristics of plate heat exchangers were investigated experimentally. Based on the experimental results, empirical correlations were proposed. More than 95% of the predictions made based on the correlations had relative deviations of less than ${\pm}10%$ when compared with the measured data.

Analysis of Particles Motion in Vertical Rayleigh Flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.447-456
    • /
    • 2007
  • Suspended particles behavior when they go through a vertical riser with heat transfer is of significant concern to system designers and operators in pneumatic transport, various processes such as in chemical, pharmaceutical and food industries. When it comes with the energy system, that knowledge is critical to the reliable design practices of related equipment as heat exchangers, especially in the phase of system scale-up. Without haying a good understanding of the related physics, many scale-up practices based on their pilot plant experience suffer from unexpected behaviors and problems of unstable fluidization typically associated with excessive pressure drop, pressure fluctuation and even unsuccessful particle circulation. In the present study, we try to explain the observed phenomena with related physics, which may help understanding of our unanswered experiences and to provide the designers with more reliable resources for their work. We selected hot exhaust gas with solid particle that goes through a heat exchanger riser as our model to be considered. The effect of temperature change on the gas velocity, thermodynamic properties, and eventually on the particles motion behavior is reviewed along with some heat transfer analyses. The present study presents an optimal riser length at full scale under given conditions, and also defines the theoretical limiting length of the riser. The field data from the numerical analysis was validated against our experimental results.

Numerical Simulation of Thermal Performance of Printed Circuit Heat Exchangers with Microchannels of Different Shapes (마이크로채널 형상에 따른 PCHE 열유동 수치해석)

  • Cho, Yeon-Hwa;Lee, Kyu-Jung;Moon, Dong-Ju;Kim, Yoon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.61-66
    • /
    • 2011
  • The performance of microchannel PCHE (Printed Circuit Heat Exchanger) is superior to that of other existing commercial heat exchangers. Further, it is also more efficient than other heat exchangers. Various microchannels, whose shapes are straight (I), Wavy, Beehive, Surf, I-Wavy, I-Beehive, or I-Surf, are computationally modeled in this study. The counter-flow arrangement is used, and the flow characteristics, heat transfer, and pressure drop in the microchannels under various mass flow rate conditions are investigated. The results for I microchannel is chosen as the benchmarks and is compared with those of newly proposed microchannels. It is found that the surf-shaped microchannel is most efficient in improving the overall performance of a PCHE.

An Experimental Investigation on Condensation Heat Transfer Inside Vertical Tubes (수직관내 응축열전달에 관한 실험적 연구)

  • 윤정인;김재돌;김성규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.59-69
    • /
    • 1996
  • 냉동.공조 및 각종 화학공업에 널리 사용되는 열교환기인 응축기의 고성능화 및 합리적인 설계를 위해서는 냉매의 정확한 응축열전달률 예측과 그 메카니즘 규명이 필수 요건이다. 본 연구에서는 내경 9.7mm, 외경 12.7mm, 길이 1200mm의 수직 이중관 응축기의 압력강하 및 응축열전달특성을 실험적으로 밝혔다. 실험으로부터 Lockart-Martinelli의 상관 관계식을 이용한 수직 응축관내 압력강하 특성을 종래의 실험식들과 비교.검토하고 새로운 압력강하식을 제안하였다. 그리고 종래의 해석방법과는 달리 비환상류 모델을 가정한 해석결과로부터 전 유동양식에 걸쳐 적용할 수 있는 새로운 응축열전달 예측식을 제안하였다.

  • PDF

Louvered Fin Heat Exchanger : Optimal Design and Numerical Investigation of Heat and Flow Characteristics (루버휜 최적 설계 및 최적 모델의 열유동 특성 분석)

  • Ryu, Kijung;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.654-659
    • /
    • 2013
  • This paper presents a numerical optimization of louvered fins to enhance the JF factor in terms of the design parameters, including the fin pitch, the number of louvers, the louver angle, the fin thickness, and the re-direction louver length. We carried out a parametric study to select the three most important parameters affecting the JF factor, which were the fin pitch, number of louvers, and the louver angle. We optimally designed the louvered fin by using 3rd-order full factorial design, the kriging method, and a micro genetic algorithm. Consequently, the JF factor of the optimum model increased by 16% compared to that of the base model. Moreover, the optimum model reduced the pressure drop by 17% with a comparable heat transfer rate.

Slim Electronic Panel Cooler with Parallel Flow Condenser (PF 열교환기가 적용된 슬림형 중계기 냉각기)

  • Cho, J.P.;Kim, N.H.;Lee, J.H.;Lee, Y.J.;Mook, I.K.;Lim, W.K.;Lim, S.S.
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.483-488
    • /
    • 2006
  • In this study, newly-developed slim electronic panel cooler with aluminum PF condenser and evaporator was tested and the results are compared with imported panel cooler with fin-tube heat exchangers. The PF heat exchangers significantly (approximately 45%) reduced the refrigerant charge. The air-side pressure drop was also reduced, which resulted in the reduction of the sound level of the panel cooler. The effect of the condenser size was also investigated.

  • PDF

Study on the Drag Reduction and Heat Transfer Efficiency Reduction of the Non-Ionic Surfactant (비이온 계면활성제의 마찰 및 열교환효율 저감 특성 연구)

  • Cho, Sung-Hwan;Tae, Choon-Seob
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.133-141
    • /
    • 2007
  • The drag reduction (DR) and heat transfer efficiency reduction (HTER) of nonionic surfactant according to the fluid velocity, temperature and surfactant concentration were investigated experimentally. For this study, several kinds of new surfactant which contains amine-oxide and betaine were developed. And experimental apparatus equipped with two water storage tanks temperature controlled, pumps, testing pipe network, two flowmeters, two pressure gauges, heat exchanger, and data logging system was built. Results showed that existing alkyl ammonium surfactant (CTAC) had DR of $0.6{\sim}0.8$ for $1,000{\sim}2,000\;ppm$ in fluid temperature of $50{\sim}60^{\circ}C$ and had very low DR in fluid temperature over $70^{\circ}C$. And new amino oxide and betaine surfactant (SAOB) had lower DR in fluid temperature of $50{\sim}60^{\circ}C$ compared with CTAC but in fluid temperature of $70{\sim}80^{\circ}C$ DR was $0.6{\sim}0.8$ for 1$1,000{\sim}2,000\;ppm$.