• 제목/요약/키워드: Heat evolution equation

검색결과 25건 처리시간 0.028초

용접공정의 유한요소해석 (Finite element analysis of welding processes)

  • 최강혁;김주완;임세영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.465-467
    • /
    • 2004
  • Finite element analysis of welding processes, which entail phase evolution, heat transfer and deformation, is considered in this paper. Attention focuses on numerical implementation of the thermo-elastic-plastic constitutive equation proposed by Leblond et al in consideration of the transformation plasticity. Based upon the multiplicative decomposition of deformation gradient, hyperelastic formulation is employed for efficient numerical integration, and the algorithmic consistent moduli for elastic-plastic deformations including transformation plasticity are obtained in the closed form. The convergence behavior of the present implementation is demonstrated via a couple of numerical examples. Several locking phenomena removed by Solid-shell element.

  • PDF

고온 초전도체 테이프의 안정성 해석 (The stability analysis of high-temperature superconductor tape)

  • 정신근;설승윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.186-191
    • /
    • 2000
  • Stability of a Bi-2223/Ag tape was studied by using a numerical method. A numerical modeling has been developed to analyze the dynamic evolution of normal zone in a composite tape Bi-2223/Ag. In this paper, the stability of HTS tape is studied by considering the non-uniform temperature distribution in a cross-sectional area. The finite-difference method(FDM) is used to solve the two-dimensional heat conduction equation. Two kinds of analyses are compared to quantify the critical disturbance energy fur quenching HTS tapes. One is the length-thickness(x-y) side and the other is the length-width(x-z) side. The results of analyses shows that the critical disturbance energies for each cases seem to be very close for considered Bi-2223/Ag tape.

  • PDF

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

Stability analysis in BWRs with double subdiffusion effects: Reduced order fractional model (DS-F-ROM)

  • Gilberto Espinosa-Paredes;Ricardo I. Cazares-Ramirez;Vishwesh A. Vyawahare;Erick-G. Espinosa-Martinez
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1296-1309
    • /
    • 2024
  • The aim of this work is to explore the effect of the double subdiffusion on the stability in BWRs. A BWR novel reduced order model with double subdiffusion effects: reduced order fractional model (DS-F-ROM) to describe the neutron and heat transfer processes was proposed for this study. The double subdiffusion was developed with a fractional-order two-equation model, and with different fractional-orders and relaxation times. The stability analysis was carried out using the root-locus method and change from the s to the W domain and were confirmed using the time-domain evolution of neutron flux for a unit step change in reactivity. The results obtained using the reduced fractional-order model are presented for different anomalous diffusion coefficient values. Results are compared with normal diffusion and P1 equations, which are obtained straightforwardly with DS-ROM when relaxation time tends to zero, and when the anomalous diffusion coefficient tends to one, respectively.

Recurrent Neural Network Models for Prediction of the inside Temperature and Humidity in Greenhouse

  • Jung, Dae-Hyun;Kim, Hak-Jin;Park, Soo Hyun;Kim, Joon Yong
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.135-135
    • /
    • 2017
  • Greenhouse have been developed to provide the plants with good environmental conditions for cultivation crop, two major factors of which are the inside air temperature and humidity. The inside temperature are influenced by the heating systems, ventilators and for systems among others, which in turn are geverned by some type of controller. Likewise, humidity environment is the result of complex mass exchanges between the inside air and the several elements of the greenhouse and the outside boundaries. Most of the existing models are based on the energy balance method and heat balance equation for modelling the heat and mass fluxes and generating dynamic elements. However, greenhouse are classified as complex system, and need to make a sophisticated modeling. Furthermore, there is a difficulty in using classical control methods for complex process system due to the process are non linear and multi-output(MIMO) systems. In order to predict the time evolution of conditions in certain greenhouse as a function, we present here to use of recurrent neural networks(RNN) which has been used to implement the direct dynamics of the inside temperature and inside humidity of greenhouse. For the training, we used algorithm of a backpropagation Through Time (BPTT). Because the environmental parameters are shared by all time steps in the network, the gradient at each output depends not only on the calculations of the current time step, but also the previous time steps. The training data was emulated to 13 input variables during March 1 to 7, and the model was tested with database file of March 8. The RMSE of results of the temperature modeling was $0.976^{\circ}C$, and the RMSE of humidity simulation was 4.11%, which will be given to prove the performance of RNN in prediction of the greenhouse environment.

  • PDF