• Title/Summary/Keyword: Heat element

Search Result 1,760, Processing Time 0.034 seconds

The A Study on the Non-powered Circulator to Solve the Temperature Stratification of a Convection Heating Device during Winter Using 3D Printer (3D프린터를 이용한 겨울철 대류난방기구의 온도 성층화 해결을 위한 무동력 서큘레이터 디자인에 관한 연구)

  • Kang, Hee-Ra
    • Journal of Digital Convergence
    • /
    • v.19 no.6
    • /
    • pp.285-292
    • /
    • 2021
  • Due to the recent Corona 19 outbreak, camping culture is rapidly drawing attention from many people. Convective heating devices, which many campers use during winter, have the temperature stratification problem. To solve this problem, various power circulators are being used. Several non-powered circulators are also on sale, but the direction of the circulator is designed to be at the right angle relative to the convection heating mechanism and the circulator does not properly play the role of air circulation. To solve this problem, a 3D printer is used to design a non-powered circulator in the same direction as the convection heating mechanism. Electricity is generated without power using Peltier element and ceramic paper and the circulator is produced to withstand heat using HTPLA-CF filament. This study presents a method to solve the temperature stratification problem through efficient convective circulation. In addition, the purpose of this study is to manufacture products at a lower cost by using a 3D printer.

Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation (리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구)

  • Yoon, Hyun-Ki;Ha, Sang-Hyeon;Lee, Jaein
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

Analysis of Cutting Force and Plastic Deformation Occurring During Machining of Ti-6Al-4V Alloy Aircraft Parts (Ti-6Al-4V 합금 항공기 부품 가공 시 발생하는 절삭추력 및 소성변형에 대한 해석)

  • Son, Hwi Jun;Kim, Seok;Park, Ki-Beom;Jung, Hyoun Chul;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.25-31
    • /
    • 2022
  • Recently, investment in the aerospace industry has increased, and titanium alloys have been widely adopted for manufacturing parts in the aerospace industry. The Ti-6Al-4V alloy has high strength in high-temperature and high-pressure environments and is evaluated as a material with excellent heat, corrosion, and abrasion. However, titanium alloys are expensive, difficult to cut, and possess a large cutting load during the drilling process. In this study, the cutting force generated in the drilling process of Ti-6Al-4V alloy was verified via finite element analysis (FEM) and cutting force measurement experiments. A structural analysis was performed based on the cutting analysis data to verify the plastic deformation occurring during the drilling process of cylindrical Ti-6Al-4V alloy aircraft parts. Methods were proposed to predict the amount of deformation that occur during the manufacturing process of titanium-alloy aircraft parts and control the external environment, to minimize the amount of deformation.

Die Stress Reduction Design and Mechanical Properties Analysis of Warm Forging Process for the Application of Warm-Closed Forging of Automative Steering Unit Yoke (자동차 조향장치 부품 요크의 온간 밀폐 단조 적용을 위한 금형 응력 저감 설계 및 온간 단조품의 기계적 특성 분석)

  • Seong, S.G.;Kim, K.H.;Lee, Y.S.;Lee, S.Y.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, finite element analyses were performed by applying a stress ring and split die design to relieve the tensile stress acting on the die due to high surface pressure during warm-closed forging. The applied material was a yield-ratio-control-steel (YRCS). It was used without quenching or tempering after forging. In the case of stress rings design, the number of stress rings and the tolerance for shrink fit were different. Vertical and horizontal splits were applied for insert die split design. Case 5 die with three stress rings, 0.2 % shrink fit tolerance, and vertical split was selected as an effective die design for tensile stress reduction. Based on die stress reduction analyses, Case 5 die for warm-closed forging was produced and smooth forgeability was secured, making it possible to manufacture forging product of yoke with the required geometry. In addition, controlled cooling using warm forging heat was applied to secure mechanical properties of yokes. When oil cooling was used for direct controlled cooling after warm-closed forging, a relatively uniform Rockwell hardness distribution and high mechanical properties could be obtained.

Structural Stability Evaluation of Eco-Friendly Prefabricated Rainwater Infiltration Type Detention Facility with Red Clay Water-Permeable Block Body (황토투수블록체를 적용한 친환경 조립식 빗물 침투형 저류시설의 구조 안정성 평가)

  • Choi, Hyeonggil;Lee, Taegyu;Kim, Hojin;Choi, Heeyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, due to the frequent occurrence of localized torrential rains and heat waves caused by abnormal climates. For this reason, it is necessary to develop an economical and eco-friendly rainwater detention facility that can secure the groundwater level through rainwater detention as well as flood prevention against concentrated rainfall by simultaneously implementing rainwater permeation and storage. In this study, the structural safety of an eco-friendly rainwater infiltration type detention facility made using eco-friendly inorganic binders including red clay was examined. Static analysis considering the constant load and additional vertical load and dynamic analysis considering the seismic spectrum were performed. As a result, it was found that the eco-friendly prefabricated rainwater infiltration type detention facility developed in this study has a maximum stress of about 68.1% to 75.4% and a maximum displacement of about 0.9% to 9.6% under the same load and seismic conditions compared to the existing PE block rainwater detention facility. It was confirmed that the eco-friendly prefabricated rainwater infiltration type detention facility secured excellent structural stability.

Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy (Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구)

  • W. G. Seo;K. Thool;H. N. Lee;D. J. Yang;S. G. Park;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

Development of class I surge protection device for the protection of offshore wind turbines from direct lightning (해상풍력발전기 직격뢰 보호용 1등급 바리스터 개발)

  • Geon Hui Lee;Jae Hyun Park;Kyung Jin Jung;Sung-Man Kang;Seung-Kyu Choi;Jeong Min Woo
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.50-56
    • /
    • 2023
  • With the abnormal weather phenomena caused by global warming, the frequency and intensity of lightning strikes are increasing, and lightning accidents are becoming one of the biggest causes of failures and accidents in offshore wind turbines. In order to secure generator operation reliability, effective and practical measures are needed to reduce lightning damage. Because offshore wind turbines are tall structures installed at sea, the possibility of direct lightning strikes is very high compared to other structures, and the role of surge protection devices to minimize damage to the electrical and electronic circuits inside the wind turbine is very important. In this study, a varistor, which is a key element for a class 1 surge protection device for direct lightning protection, was developed. The current density was improved by changing the varistor composition, and the distance between the electrode located on the varistor surface and the edge of the varistor was optimized through a simulation program to improve the fabrication process. Considering the combined effects of heat distribution, electric field distribution, and current density on the optimized varistor surface, silver electrodes were formed with a gap of 0.5 mm. The varistor developed in this study was confirmed to have an energy tolerance of 10/350 ㎲, 50kA, which is a representative direct lightning current waveform, and good protection characteristics with a limiting voltage of 2 kV or less.

Microstructure analysis of pressure resistance seal welding joint of zirconium alloy tube-plug structure

  • Gang Feng;Jian Lin;Shuai Yang;Boxuan Zhang;Jiangang Wang;Jia Yang;Zhongfeng Xu;Yongping Lei
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4066-4076
    • /
    • 2023
  • Pressure resistance welding is usually used to seal the connection between the cladding tube and the end plug made of zirconium alloy. The seal welded joint has a direct effect on the service performance of the fuel rod cladding structure. In this paper, the pressure resistance welded joints of zirconium alloy tube-plug structure were obtained by thermal-mechanical simulation experiments. The microstructure and microhardness of the joints were both analyzed. The effect of processing parameters on the microstructure was studied in detail. The results showed that there was no β-Zr phase observed in the joint, and no obvious element segregation. There were different types of Widmanstätten structure in the thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ) of the cladding tube and the end plug joint because of the low cooling rate. Some part of the grains in the joint grew up due to overheating. Its size was about 2.8 times that of the base metal grains. Due to the high dislocation density and texture evolution, the microhardnesses of TMAZ and HAZ were both significantly higher than that of the base metal, and the microhardness of the TMAZ was the highest. With the increasing of welding temperature, the proportion of recrystallization in TMAZ decreased, which was caused by the increasing of strain rate and dislocation annihilation.

Interstitial Hyperthermia by Radiofrequency Needle Electrode System : Phantom and Canine Brain Studies (8 MHz 라디오파를 이용한 자입식 온열치료 -조직등가물질을 통한 온도분포 및 개 뇌실질의 조직병리 변화에 관한 연구-)

  • Lee, Hyung-Sik;Chu, Sung-Sil;Sung, Jin-Sil;Suh, Chang-Ok;Kim, Gwi-Eon;Loh-John-Juhn-Kyu;Kim, Young-Soo;Kim, Sun-Ho;Chung, Song-Sup;Han, Eun-Kyung;Kim, Tae-Seung
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 1991
  • An interstitial radiofrequency needle electrode system was constructed for interstitial heating of brain tissue. Radiofrequency electrodes with Thermotron RF 8 were tested in an agar phantom and in a normal canine brain to determine how variations in physical factors affected temperature distributions. Temperature distributions were checked after heating with 1 mm diameter needle electrode implants on the corners of 1 and 2 cm squares in a phantom and plot isotherms for various electrodes arrangement. We observed that the 1 cm square array would heat a volume with a 1.25 cm radius circular field cross section to therapeutic temperatures ($90\%$ relative SAR using Tm) and the 2 cm square array with a 1.75 cm radius rectangular field with central inhomogeneity. With 2 cm long electrode implants, we observed that the 1 cm square array would heat a 3 cm long sagittal section to therapeutic temperature ($90\%$ relative SAR using Tm). We found that radiofrequency electrodes could be selected to match the length of the heating area without affecting its performance. The histopathological changes associated with RF heating of normal canine brains have been correlated with thermal distributions. RF needle electrode heating was applied for 50min to generate tissue temperatures of $43^{\circ}C$. We obtained a quarter of the heated tissue material immediately after heating and sacrificed at intervals from $7\sim30$days. The acute stage (immediately after heating) was demonstrated by liquefactive necrosis, pyknosis of neuronal element in the gray matter and by some polymer-phonuclear leukocytes infiltration. The appearance of lipid-laden macrophages surrounding the area of liquefaction necrosis was demonstrated in all three sacrificed dogs. Mild gliosis occurring around the necrosis was demonstrated in the last sacrificed (Days 30) canine brain.

  • PDF

A Study For Optimizing Input Waveforms In Radiofrequency Liver Tumor Ablation Using Finite Element Analysis (유한 요소 해석을 이용한 고주파 간 종양 절제술의 입력 파형 최적화를 위한 연구)

  • Lim, Do-Hyung;NamGung, Bum-Seok;Lee, Tae-Woo;Choi, Jin-Seung;Tack, Gye-Rae;Kim, Han-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.235-243
    • /
    • 2007
  • Hepatocellular carcinoma is significant worldwide public health problem with an estimated annually mortality of 1,000,000 people. Radiofrequency (RF) ablation is an interventional technique that in recent years has come to be used for treatment of the hepatocellualr carcinoma, by destructing tumor tissues in high temperatures. Numerous studies have been attempted to prove excellence of RF ablation and to improve its efficiency by various methods. However, the attempts are sometimes paradox to advantages of a minimum invasive characteristic and an operative simplicity in RF ablation. The aim of the current study is, therefore, to suggest an improved RF ablation technique by identifying an optimum RF pattern, which is one of important factors capable of controlling the extent of high temperature region in lossless of the advantages of RF ablation. Three-dimensional finite element (FE) model was developed and validated comparing with the results reported by literature. Four representative Rf patterns (sine, square, exponential, and simulated RF waves), which were corresponding to currents fed during simulated RF ablation, were investigated. Following parameters for each RF pattern were analyzed to identify which is the most optimum in eliminating effectively tumor tissues. 1) maximum temperature, 2) a degree of alteration of maximum temperature in a constant time range (30-40 second), 3) a domain of temperature over $47^{\circ}C$ isothermal temperature (IT), and 4) a domain inducing over 63% cell damage. Here, heat transfer characteristics within the tissues were determined by Bioheat Governing Equation. Developed FE model showed 90-95% accuracy approximately in prediction of maximum temperature and domain of interests achieved during RF ablation. Maximum temperatures for sine, square, exponential, and simulated RF waves were $69.0^{\circ}C,\;66.9^{\circ}C,\;65.4^{\circ}C,\;and\;51.8^{\circ}C$, respectively. While the maximum temperatures were decreased in the constant time range, average time intervals for sine, square, exponential, and simulated RE waves were $0.49{\pm}0.14,\;1.00{\pm}0.00,\;1.65{\pm}0.02,\;and\;1.66{\pm}0.02$ seconds, respectively. Average magnitudes of the decreased maximum temperatures in the time range were $0.45{\pm}0.15^{\circ}C$ for sine wave, $1.93{\pm}0.02^{\circ}C$ for square wave, $2.94{\pm}0.05^{\circ}C$ for exponential wave, and $1.53{\pm}0.06^{\circ}C$ for simulated RF wave. Volumes of temperature domain over $47^{\circ}C$ IT for sine, square, exponential, and simulated RF waves were 1480mm3, 1440mm3, 1380mm3, and 395mm3, respectively. Volumes inducing over 63% cell damage for sine, square, exponential, and simulated RF waves were 114mm3, 62mm3, 17mm3, and 0mm3, respectively. These results support that applying sine wave during RF ablation may be generally the most optimum in destructing effectively tumor tissues, compared with other RF patterns.