• Title/Summary/Keyword: Heat current

Search Result 2,148, Processing Time 0.024 seconds

Electrical Characteristics of the Interfacial Layer between XLPE/EPDM Laminates on the Heat Treatment (열처리 조건에 따른 XLPE / EPDM 계면의 전기적 특성)

  • 최원창;이제정;김석기;조대식;한상옥;박강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.225-228
    • /
    • 1997
  • The main fault in this interface is that power cable insulating materials are mainly composed of a double layered structure, XLPE/FPDM laminates in cable joint. In this parer, we instituted the interface of XLPE/EPDM laminates and then investigated the breakdown and conduction characteristics as a function of heat treatment time. The results showed that conduction current was influenced by volatile crosslinking by-products which remained inside the insulating material during the production of XLPE and EPDM, especially during heat treatment process. And conduction current of XLPE/Oil 12500cSt/EPDM was more stable than XLPE/Grease/EPDM from the long heat treatment time. AC breakdown strength of silicone oil itself from the heat treatment was changed during the 4∼12 hour heat treatment time.

  • PDF

The Coupled Electro-Thermal Field Analysis for Predicting Over-Current Protector Behavior

  • Bae, Jae-Nam;Lee, Sung-Gu;Han, Jung-Ho;Chung, Hae-Yang;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.43-48
    • /
    • 2008
  • The characteristics of heat transfer of the bimetal disc for over-current protection device is specified. Bimetal consists of two metals which have a different thermal expansion coefficient. To analyze the thermal characteristics, temperature distribution when bimetal acts as a switch is calculated. As usual, heat source is applied to the bimetal and electric current is heat source in the over-current protection switch. In this paper, thermal distribution are obtained by solving a coupled electro-thermal field with 3D finite element method.

Electrical and thermal characteristics of PRAM with thickness of phase change thin film (상변화 박막의 두께에 따른 상변화 메모리의 전류 및 열 특성)

  • Choi, Hong-Kyw;Kim, Hong-Seung;Lee, Seong-Hwan;Jang, Nak-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.162-168
    • /
    • 2008
  • In this paper, we analyzed the heat transfer phenomenon and the reset current variation of PRAM device with thickness of phase change material using the 3-D finite element analysis tool. From the simulation, Joule's heat was generated at the contact surface of phase change material and bottom electrode of PRAM. As the thickness of phase change material was decreased, the reset current was highly increased. In case thickness of phase change material thin film was $200\;{\AA}$, heat increased through top electrode and reset current caused by phase transition highly increased. And as thermal conductivity of top electrode decreased, temperature of unit memory cell was increased.

A Study on the Normal-zone Propagation Velocity in a Superconducting Coil (초전도 코일의 국부 퀜치 발생시 상전도영역 전파속도 해석)

  • 배진한;서용석;오윤상;고태국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1041-1049
    • /
    • 1994
  • Longitudimal and transverse normal zone propagations in the superconducting coil are analyzed and propagation velocity is derived from the heat balance equations in the propagating boundary region. The results of applying to the specific superconducting wire show that propagation velocity is linearly proportional to the transport current and increasing ramp current speeds up the longitudinal velocity by 1.22[m/s] under the applied field of 2T. Transient heat transfer has a significant effect on the normal zone propagation velocity and it decreases longitudinal velocity by 5.2[m/s] under the applied field of 2T as being compared to the steady-state heat transfer. Increasing ramp current speeds up the Z-axis transverse propagation velocity by 0.042[m/s] and transverse velocity of R and Z axis is costant regardless of the current flows.

Study on Optimal Welding Condition for Shipbuilding Steel Materials (조선강재의 최적 용접조건에 관한 연구)

  • Kim, Ok-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.128-133
    • /
    • 2011
  • In this study, the steel material for shipbuilding(LR-A class) was used, and FCAW was taken advantage of 3G attitude and they are welded by different welding ways. As a result of analyzing wave with welding monitoring system, the stable values are obtained which are the first floor(electronic current 164~182 A, voltage 24 V), the second floor(electronic current 174~190 A, voltage 22~25 V), the third floor(electronic current 158~188 A, voltage 22~25 V), and fourth floor(electronic current 172~184 A, voltage 22~25 V), at this time, the stable wave standard deviation and changing coefficient could be obtained. When the welding testing through nondestructive inspection was analyzed know defect of welding, there was no defect of welding in A, D, E, but some porosities in B, and slag conclusion near the surface in C, because the length of arc was not accurate, and the electronic current and voltage was not stable. After observing the change of heat affect zone through micro testing, each organization of floor formed as Grain Refinement, so welding part was fine, the distance of heat affect zone is getting wider up to change the values of the electronic current and voltage. As a result of degree of hardness testing, the hardness orders were the heat affect zone(HAZ), Welding Zone(WZ), and Base Metal(BM). When the distribution of degree of hardness is observed. B is the highest degree of hardness The reason why heat effect zone is higher than welding zone and base metal, welding zone is boiled over melting point($1539^{\circ}C$) and it starts to melt after the result of analysis through metal microscope, so we can know that delicate tissue is created at the welding zone. Therefore, in order to get the optimal conditions of the welding, the proper current of the welding and voltage is needed. Furthermore the precise work of welding is required.

Improved Hysteresis Current Control Regulator for High-efficiency Switching (고효율 스위칭을 위한 개선된 히스테리시스 전류제어기)

  • Hong, Sun-Ki;Park, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1606-1610
    • /
    • 2012
  • Hysteresis current regulator has been used widely because of its simple principle and structure. However, when the current band width is too narrow or the applied voltage is relatively too high, the switching frequency may increase abruptly and it generates a large amount of heat. Thus, this study will suggest a better and simple method to reduce the switching frequency. For single phase current control, the proposed hysteresis current control is executed by adding 0 mode state and comparing the slope of the current reference. This simple method decreases the generated switching frequency and significantly reduces the generated heat. This proposed method was proved with simulations and experiments comparing with the classical hysteresis current control method.

Development and Strength Evaluation of Ring Projection Welding Process of the Microminiature Tube and Tubesheet (초소형 튜브와 튜브판의 링 프로젝션 용접 공정개발 및 강도 평가)

  • Yun, Young-Hyun;Kim, Hyun-Joon;Kim, Chang-Soo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.63-68
    • /
    • 2009
  • Microminiature heat exchanger has been applied to the gas turbine in order to increase energy efficiency. During the production of microminiature heat exchanger, however, it is very difficult to weld tube to tubesheet. In this study, therefore, welding process of resistance ring projection was used, and weld tensile tests were performed. Sound weld joint was obtained as a result of applying resistance ring projection welding to microminiature heat exchanger to tubesheet. Cold weld occurred at under 1600A. Even though tensile strength was increased with increasing current, splash occurred and tensile strength decreased at 2000A due to the excessive current. Therefore it was determine that the optimal current is 1900A. As result of tensile tests based on ASME code for tube to tubesheet weldment, rupture position was weldment due to Fs(Fractured section) of nugget, which was smaller than tube thickness (t), and it was proven as a partial strength welding because of the average joint efficiency fr = 0.90.

An Electrochemical Property Stud on the Corrosion Behavior of Welding Part of RE36 Steel for Marine Structure (해양구조물용 RE36강의 용접부 부식거동에 관한 전기화학적 특성 연구)

  • 김성종;김진경;문경만
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.70-76
    • /
    • 2000
  • The effect of Post Weld Heat Treatment(PWHT) of RE36 steel for marine structure was investigated with parameters such as micro-vickers hardness, corrosion potential and corrosion current density of weld metal(WM), base metal(BM) and heat affected zone(HAZ), and both Al alloy anode generating current and Al alloy anode weight loss quantity etc. Hardness of post-weld heat treated BM, WM and HAZ is lower than that of As-welded condition of each region. However, hardness of HAZ was the highest among those three parts regardless of PWHT temperature and corrosion potential of WM was the highest among those three parts without regard to temperature and corrosion potential of WM was the highest among those three parts without regard to PWHT temperature. The amplitude of corrosion potential difference of each other three parts at PWHT temperature $550^{\circ}C$, $650^{\circ}C$ are smaller than that of three parts by As-welded condition and corrosion current density obtained by PWHT was also smaller than that of As-welded condition. Eventually, it was known that corrosion resistance was increased by PWHT. However both Al anode generating current and anode weight loss quantity were also decreased by PWHT compare to As-welded condition when RE36 steel is cathodically protected by Al anode. Therefore, it is suggested that the optimum PWHT temperature with increasing corrosion resistance and cathodic protection effect is $550^{\circ}C$.

  • PDF

Quantitative Analysis on the Effects of Welding Parameters on Diffusible Hydrogen Contents in Weld Metal Produced by FCAW Process (FCAW에서 용접금속 확산성수소량에 미치는 용접변수 영향의 정량적 해석)

  • Han, Dong-Woo;Bang, Kook-Soo;Jeong, Hong-Chul;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.54-59
    • /
    • 2010
  • The effects of welding parameters such as contact tip-to-work distance (CTWD), voltage, and current on the weld metal diffusible hydrogen contents (HD) were investigated and rationalized by the calculation of heating time and amount of heat generated in the extension length of flux cored wire. As CTWD increased from 15 to 25mm, HD decreased from 8.46 to 5.45mL/100g deposited metal. Calculations showed that, with an increase of CTWD, the amount of heat generated increased from 46 to 92J in addition to an increase of heating time. Increase of current from 250 to 320A, however, gave little variation of HD. It showed that no significant change in the amount of heat generated was found, and heating time was decreased with an increase of current. It also showed that CTWD is more influential than voltage in relatively lower heat input ranges, while voltage is more in higher input ranges