• 제목/요약/키워드: Heat current

Search Result 2,148, Processing Time 0.028 seconds

A Study of Heat Input Distribution on the Surface during Torch Weaving in Gas Metal Arc Welding (가스 메탈 아크 용접에서 토치 위빙 중 표면 입열 분포 해석에 관한 연구)

  • 김용재;이세현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.316-319
    • /
    • 2001
  • In weaving welding where a V groove exists, the heat input distribution is an important factor that determines the defectiveness of the bead shape, undercut and over-lap. In this study, the amount of heat input, which is determined by the welding current, voltage, speed and weaving conditions is calculated through numerical methods. Furthermore, the heat input distribution as a two- dimensional heat source was observed when applied to each groove. Therefore, a heat input control algorithm is suggested to prevent the defects generated from undercut or over-lap, which was verified through an analysis of the heat input distribution.

  • PDF

In-Situ Performance Test of a Wet Surface Finned-Tube Evaporator of an Air Source Heat Pump (공랭식 열펌프의 습표면 핀-관 증발기의 현장 성능 시험)

  • 백영진;장영수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.818-826
    • /
    • 2001
  • In this study, in-situ performance test of a wet surface finned-tube evaporator of an air source heat pump which has a rating capacity of 20RT is carried out. Since test conditions, such as indoor and outdoor air conditions cannot be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist, From the experimental data, air side heat and mass transfer coefficients were calculated by the well known heat and mass transfer analogy and tube-by-tube method. since current procedure underpredicted the experimental sensible heat factor(SHF), a proper empirical parameter was introduced to predict the experimental data with satisfactory results. This study provides the method of evaluating the heat and mass transfer coefficients of a wet surface finned-tube evaporator of which in-situ performance test in necessary.

  • PDF

Analysis of a Wet Surface Finned-tube Evaporator of an Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.211-219
    • /
    • 2002
  • In this study, in-situ performance test of a wet surface finned-tube evaporator of an air source heat pump which has a rating capacity of 20 RT is carried out. Since test conditions, such as indoor and outdoor air conditions cannot be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. From the experimental data, air side heat and mass transfer coefficients were calculated by the well known heat and mass transfer analogy and tube-by-tube method. Since current procedure underpredicted the experimental sensible heat factor (SHF), a proper empirical parameter was introduced to predict the experimental data with satisfactory results. This study provides the method of evaluating the heat and mass transfer coefficients of a wet surface finned-tube evaporator of which in-situ performance test is necessary.

Heat Pipe Heat Sink Development for Electronics Cooling (전자냉각용 히트파이프 히트싱크 개발)

  • 이기우;박기호;이석호;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.664-670
    • /
    • 2002
  • A heat sink (HS) system using heat pipes for electronics systems was studied. The experimental results indicate that a cooling capacity of up to 150w at an overall temperature difference of $50^{\circ}C$ can be attainable. The heat sink design program also showed that a computer simulation can predict the most of the parameters involved. To do so, however, the interior temperature distribution had to be verified by experimental results. The current simulation results were close to the experimental results in acceptable range. The simulation study showed that the design program can be a good tool to predict the effects of various parameters involved in the optimum design of the heat sink.

Analysis on Cascade Cycle Heat Pump Application as Night Storage Heater (심야전력을 이용한 Cascade Heat Pump Cycle의 운전결과 분석)

  • JUNG, H.;HWANG, S.W.;LEE, C.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.113-118
    • /
    • 2011
  • To analyze and verify the effect of replacing thermal storage heater by a cascade cycle heat pump using midnight electricity was installed and tested at a customer's house in Wonju, Korea. The electric night storage heater is consist of 30kW electric heater and 2,700 liters of thermal storage water tank to supply hot water for warming house floor. The power for electric heater was cut off and hot water was only generated by cascade cycle heat pump. Current thermal storage water tank was not eliminated and electric heater wiring was modified. Some operation logic of the heat pump was also modified for proper operation. The required capacity of the heat pump and hot water temperature for given warming condition were estimated. The estimated capacity of heat pump was about 19kW and estimated hot water temperature for proper heating was at least $75^{\circ}C$.

Development of constant current device for using in the water treatment controller with Ni-Tl-P alloy deposits (Ni-Tl-P합금피막을 이용한 수처리장치용 정전류소자의 개발)

  • Ryu, Il-Kwang
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.35-42
    • /
    • 2003
  • The electric resistance and constant current were investigated on the nickel-thallium-phosphorus alloy deposits by electroless-plating. The Ni-Tl-P alloy deposits were achieved with a bath using sodium hypophosphit as the reducing agent and sodium citrate as the comlexing agent. The basic plating solution is composed of 0.1M NiSO$_4$, 0.005${\sim}$0.0IM Tl$_2$S0$_4$, 0.1${\sim}$O.2M sodium hypophosphite and 0.02${\sim}$O.IM sodium citrate and the plating condition were pH 5${\sim}$6, temperrature 80$_4$90${\circ}$C. The results obtained are summarized as follows: 1) The crystal structure of deposit was amorphous structure as deposited state, became microcrystallized centering on Ni(111) plane by heat treatment at 200${\circ}$C, and grew as polycrystalline Ni, Ni$_3$P, Ni$_5$p$_2$,Tl, etc. by heat treatment higher than 350${\circ}$C. The grain size of plated deposits was grown up to 28.3~42.0nm by heat treatment for 1hour at 500${\circ}$C. 2) The electrical resistivity showed a comparatively high value of 192.5$_4$208.3 ${\mu}$${\Omega}$Cm and its thermal stability was great with resistivity value less than 0.22% in the thermal surroundings of 200${\circ}$C. 3) Ni-Tl-P alloy deposit showed such good constant current-making-effect in the variation of electric voltage, heat treatment temperature, and the composition of the deposit that it can be put to practical use as the matter of constant current device.

Investigation on vapor-cooled current leads operating in pulse mode (펄스 모드로 작동하는 증기냉각 전류 도입선에 관한 연구)

  • 인세환;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.66-72
    • /
    • 2002
  • This paper describes numerical modeling for thermal characteristic of vapor-cooled current leads under pulse operation. The transient thermal analysis considers the temperature difference between a helium gas (low and a copper lead and temperature dependent properties of helium gas, copper and stainless steel. This numerical modeling was compensated and validated by an experiment with commercially available 100 A vapor-cooled current leads. A proper overloading factor was suggested for the current leads under pulse operation through this modeling, which can significantly reduce heat input to a cryostat.

Feasibility study on the design of DC HTS cable core

  • Sim, Ki-Deok;Kim, Seok-Ho;Jang, Hyun-Man;Lee, Su-Kil;Won, Young-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.24-30
    • /
    • 2010
  • The renewable energy source is considered as a good measure to cope with the global warming problem and the fossil energy exhaustion. The construction of electric power plant such as an offshore wind farm is rapidly increasing and this trend is expected to be continued during this century. The bulky and long distance power transmission media is essential to support and promote the sustainable expansion of renewable energy source. DC power cable is generally considered as the best solution and the demand for DC electric power has been rapidly increasing. Especially, the high temperature superconducting (HTS) DC cable system begins to make a mark because of its advantages of huge power transmission capacity, low transmission loss and other environmental friendly aspects. Technical contents of DC HTS cable system are very similar to those of AC HTS cable system. However the DC HTS cable can be operated near its critical current if the heat generation is insignificant, while the operating current of AC HTS cable is generally selected at about 50~70% of the critical current because of AC loss. We chose the specifications of the cable core of 'Tres Amigas' project as an example for our study and investigated the heat generation when the DC HTS cable operated near the critical current by some electric and thermal analyses. In this paper, we listed some technical issues on the design of the DC HTS cable core and described the process of the cable core design. And the results of examination on the current capacity, heat generation, harmonic loss and current distribution properties of the DC HTS cable are introduced.

Effects of High Temperature Heat Treatment on the Microstructure and Superconducting Property of HTS Coated Conductor (Coated Conductor의 특성 및 미세조직에 미치는 고온열처리 영향)

  • Doh, Min-Ho;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • HTS coated conductor was heat treated at high temperatures below the melting points of silver and YBCO at different oxygen partial pressures. Current carrying capacity and microstructure were varied depending on the presence of silver protection layer. Critical current of coated conductor without silver protection layer was not changed when heat treatment was performed at $850^{\circ}C$ for 2 hr in an oxygen atmosphere. However, coated conductor with silver protection layer revealed abrupt drop of $I_c$ from 140A to 8A when heat treatment was performed at $800^{\circ}C$ for 2 hr in an oxygen atmosphere. Coated conductor with silver protection layer retained $70{\sim}80$ percent of its original $I_c$ when heat treatment was performed at $800^{\circ}C$ for 2 hr in an argon atmosphere containing 1000ppm oxygen. SEM and XRD observations showed the presence of interaction between YBCO and silver depending on the atmosphere of heat treatment. The reaction between YBCO superconductor and silver was accelerated at high oxygen partial pressure and resulted in the change in microstructure and decrease of critical current density even by the heat treatment performed at temperature much lower than the melting points of silver and YBCO.

  • PDF